Artwork

Contenido proporcionado por Zeta Alpha. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Zeta Alpha o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes

54:13
 
Compartir
 

Manage episode 355037190 series 3446693
Contenido proporcionado por Zeta Alpha. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Zeta Alpha o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

We discuss the Information Retrieval publication "The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes" by Nils Reimers and Iryna Gurevych, which explores how Dense Passage Retrieval performance degrades as the index size varies and how it compares to traditional sparse or keyword-based methods.

Timestamps:

00:00 Co-host introduction

00:26 Paper introduction

02:18 Dense vs. Sparse retrieval

05:46 Theoretical analysis of false positives(1)

08:17 What is low vs. high dimensional representations

11:49 Theoretical analysis o false positives (2)

20:10 First results: growing the MS-Marco index

28:35 Adding random strings to the index

39:17 Discussion, takeaways

44:26 Will dense retrieval replace or coexist with sparse methods?

50:50 Sparse, Dense and Attentional Representations for Text Retrieval

Referenced work:

Sparse, Dense and Attentional Representations for Text Retrieval by Yi Luan et al. 2020.

  continue reading

21 episodios

Artwork
iconCompartir
 
Manage episode 355037190 series 3446693
Contenido proporcionado por Zeta Alpha. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Zeta Alpha o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

We discuss the Information Retrieval publication "The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes" by Nils Reimers and Iryna Gurevych, which explores how Dense Passage Retrieval performance degrades as the index size varies and how it compares to traditional sparse or keyword-based methods.

Timestamps:

00:00 Co-host introduction

00:26 Paper introduction

02:18 Dense vs. Sparse retrieval

05:46 Theoretical analysis of false positives(1)

08:17 What is low vs. high dimensional representations

11:49 Theoretical analysis o false positives (2)

20:10 First results: growing the MS-Marco index

28:35 Adding random strings to the index

39:17 Discussion, takeaways

44:26 Will dense retrieval replace or coexist with sparse methods?

50:50 Sparse, Dense and Attentional Representations for Text Retrieval

Referenced work:

Sparse, Dense and Attentional Representations for Text Retrieval by Yi Luan et al. 2020.

  continue reading

21 episodios

Tutti gli episodi

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir