Artwork

Contenido proporcionado por Zeta Alpha. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Zeta Alpha o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Shallow Pooling for Sparse Labels: the shortcomings of MS MARCO

1:07:17
 
Compartir
 

Manage episode 355037191 series 3446693
Contenido proporcionado por Zeta Alpha. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Zeta Alpha o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

In this first episode of Neural Information Retrieval Talks, Andrew Yates and Sergi Castellla discuss the paper "Shallow Pooling for Sparse Labels" by Negar Arabzadeh, Alexandra Vtyurina, Xinyi Yan and Charles L. A. Clarke from the University of Waterloo, Canada.

This paper puts the spotlight on the popular IR benchmark MS MARCO and investigates whether modern neural retrieval models retrieve documents that are even more relevant than the original top relevance annotations. The results have important implications and raise the question of to what degree this benchmark is still an informative north star to follow.

Contact: castella@zeta-alpha.com

Timestamps:

00:00 — Introduction.

01:52 — Overview and motivation of the paper.

04:00 — Origins of MS MARCO.

07:30 — Modern approaches to IR: keyword-based, dense retrieval, rerankers and learned sparse representations.

13:40 — What is "better than perfect" performance on MS MARCO?

17:15 — Results and discussion: how often are neural rankers preferred over original annotations on MS MARCO? How should we interpret these results?

26:55 — The authors' proposal to "fix" MS MARCO: shallow pooling

32:40 — How does TREC Deep Learning compare?

38:30 — How do models compare after re-annotating MS MARCO passages?

45:00 — Figure 5 audio description.

47:00 — Discussion on models' performance after re-annotations.

51:50 — Exciting directions in the space of IR benchmarking.

1:06:20 — Outro.

Related material:

- Leo Boystov paper critique blog post: http://searchivarius.org/blog/ir-leaderboards-never-tell-full-story-they-are-still-useful-and-what-can-be-done-make-them-even

- "MS MARCO Chameleons: Challenging the MS MARCO Leaderboard with Extremely Obstinate Queries" https://dl.acm.org/doi/abs/10.1145/3459637.3482011

  continue reading

21 episodios

Artwork
iconCompartir
 
Manage episode 355037191 series 3446693
Contenido proporcionado por Zeta Alpha. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Zeta Alpha o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

In this first episode of Neural Information Retrieval Talks, Andrew Yates and Sergi Castellla discuss the paper "Shallow Pooling for Sparse Labels" by Negar Arabzadeh, Alexandra Vtyurina, Xinyi Yan and Charles L. A. Clarke from the University of Waterloo, Canada.

This paper puts the spotlight on the popular IR benchmark MS MARCO and investigates whether modern neural retrieval models retrieve documents that are even more relevant than the original top relevance annotations. The results have important implications and raise the question of to what degree this benchmark is still an informative north star to follow.

Contact: castella@zeta-alpha.com

Timestamps:

00:00 — Introduction.

01:52 — Overview and motivation of the paper.

04:00 — Origins of MS MARCO.

07:30 — Modern approaches to IR: keyword-based, dense retrieval, rerankers and learned sparse representations.

13:40 — What is "better than perfect" performance on MS MARCO?

17:15 — Results and discussion: how often are neural rankers preferred over original annotations on MS MARCO? How should we interpret these results?

26:55 — The authors' proposal to "fix" MS MARCO: shallow pooling

32:40 — How does TREC Deep Learning compare?

38:30 — How do models compare after re-annotating MS MARCO passages?

45:00 — Figure 5 audio description.

47:00 — Discussion on models' performance after re-annotations.

51:50 — Exciting directions in the space of IR benchmarking.

1:06:20 — Outro.

Related material:

- Leo Boystov paper critique blog post: http://searchivarius.org/blog/ir-leaderboards-never-tell-full-story-they-are-still-useful-and-what-can-be-done-make-them-even

- "MS MARCO Chameleons: Challenging the MS MARCO Leaderboard with Extremely Obstinate Queries" https://dl.acm.org/doi/abs/10.1145/3459637.3482011

  continue reading

21 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir