Artwork

Contenido proporcionado por Zeta Alpha. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Zeta Alpha o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Learning to Retrieve Passages without Supervision: finally unsupervised Neural IR?

59:10
 
Compartir
 

Manage episode 355037189 series 3446693
Contenido proporcionado por Zeta Alpha. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Zeta Alpha o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

In this third episode of the Neural Information Retrieval Talks podcast, Andrew Yates and Sergi Castella discuss the paper "Learning to Retrieve Passages without Supervision" by Ori Ram et al.

Despite the massive advances in Neural Information Retrieval in the past few years, statistical models still overperform neural models when no annotations are available at all. This paper proposes a new self-supervised pertaining task for Dense Information Retrieval that manages to beat BM25 on some benchmarks without using any label.

Paper: https://arxiv.org/abs/2112.07708

Timestamps:

00:00 Introduction

00:36 "Learning to Retrieve Passages Without Supervision"

02:20 Open Domain Question Answering

05:05 Related work: Families of Retrieval Models

08:30 Contrastive Learning

11:18 Siamese Networks, Bi-Encoders and Dual-Encoders

13:33 Choosing Negative Samples

17:46 Self supervision: how to train IR models without labels.

21:31 The modern recipe for SOTA Retrieval Models

23:50 Methodology: a new proposed self supervision task

26:40 Datasets, metrics and baselines

\33:50 Results: Zero-Shot performance

43:07 Results: Few-shot performance

47:15 Practically, is not using labels relevant after all?

51:37 How would you "break" the Spider model?

53:23 How long until Neural IR models outperform BM25 out-of-the-box robustly?

54:50 Models as a service: OpenAI's text embeddings API

Contact: castella@zeta-alpha.com

  continue reading

21 episodios

Artwork
iconCompartir
 
Manage episode 355037189 series 3446693
Contenido proporcionado por Zeta Alpha. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Zeta Alpha o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

In this third episode of the Neural Information Retrieval Talks podcast, Andrew Yates and Sergi Castella discuss the paper "Learning to Retrieve Passages without Supervision" by Ori Ram et al.

Despite the massive advances in Neural Information Retrieval in the past few years, statistical models still overperform neural models when no annotations are available at all. This paper proposes a new self-supervised pertaining task for Dense Information Retrieval that manages to beat BM25 on some benchmarks without using any label.

Paper: https://arxiv.org/abs/2112.07708

Timestamps:

00:00 Introduction

00:36 "Learning to Retrieve Passages Without Supervision"

02:20 Open Domain Question Answering

05:05 Related work: Families of Retrieval Models

08:30 Contrastive Learning

11:18 Siamese Networks, Bi-Encoders and Dual-Encoders

13:33 Choosing Negative Samples

17:46 Self supervision: how to train IR models without labels.

21:31 The modern recipe for SOTA Retrieval Models

23:50 Methodology: a new proposed self supervision task

26:40 Datasets, metrics and baselines

\33:50 Results: Zero-Shot performance

43:07 Results: Few-shot performance

47:15 Practically, is not using labels relevant after all?

51:37 How would you "break" the Spider model?

53:23 How long until Neural IR models outperform BM25 out-of-the-box robustly?

54:50 Models as a service: OpenAI's text embeddings API

Contact: castella@zeta-alpha.com

  continue reading

21 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir