show episodes
 
Artwork
 
What moves the continents, creates mountains, swallows up the sea floor, makes volcanoes erupt, triggers earthquakes, and imprints ancient climates into the rocks? Oliver Strimpel, a former astrophysicist and museum director asks leading researchers to divulge what they have discovered and how they did it. To learn more about the series, and see images that support the podcasts, go to geologybites.com. Instagram: @GeologyBites Bluesky: GeologyBites X: @geology_bites Email: geologybitespodcas ...
  continue reading
 
Geology is the scientific study of the Earth, its origin, structure, processes and composition. This album is concerned mainly with the interpretation of geological maps and the relationship between the landscape and underlying rocks. It reveals how the geological history of any area can be interpreted from a geological map. Dr Andrew Bell visits Morecambe Bay and the 'special' Siccar Point to investigate the rocks and stones in the area. This material is taken from The Open University cours ...
  continue reading
 
Chicago College Podcast based on the hard knocks of life, school troubles, relationships, women problems, and situationships. Support this podcast: https://podcasters.spotify.com/pod/show/theboonepodcast/support
  continue reading
 
Loading …
show series
 
With most of Greenland buried by kilometers of ice, obtaining direct information about its geology is challenging. But we can learn a lot from measurements of the island’s geophysical properties — seismic, gravity, magnetic from airborne and satellite surveys and from its topography, which we can see relatively well through the ice using radar. In …
  continue reading
 
Omar Issa, ResiQuant (Co-Founder)/Stanford University A study by FEMA suggests that 20-40% modern code-conforming buildings would be unfit for re-occupancy following a major earthquake (taking months or years to repair) and 15-20% would be rendered irreparable. The increasing human and economic exposure in seismically active regions emphasize the u…
  continue reading
 
As we wean ourselves away from fossil fuels and ramp up our reliance on alternatives, batteries become ever more important for two main reasons. First, we need grid-scale batteries to store excess electricity from time-varying sources such as wind and solar. Second, we use them to power electric vehicles, which we are now producing at the rate of a…
  continue reading
 
Martijn van den Ende, Université Côte d'Azur Already for several years it has been suggested that Distributed Acoustic Sensing (DAS) could be a convenient, low-cost solution for Earthquake Early Warning (EEW). Several studies have investigated the potential of DAS in this context, and demonstrated their methods using small local earthquakes. Unfort…
  continue reading
 
Sara Beth Cebry, U.S.G.S. luid injection decreases effective normal stress on faults and can stimulate seismicity far from active tectonic regions. Based on earthquake nucleation models and measured stress levels, slip will be stable, aseismic, and limited to the fluid pressurized region—contrary to observed increases in seismicity. To unders…
  continue reading
 
John Rekoske, University of California San Diego Rapidly estimating the ground shaking produced by earthquakes in real-time, and from future earthquakes, are important challenges in seismology. Numerical simulations of seismic wave propagation can be used to estimate ground motion; however, they require large amounts of computing power and are too …
  continue reading
 
Knowing exactly where faults are located is important both for scientific reasons and for assessing how much damage a fault could inflict if it ruptured and caused an earthquake. In the podcast, Rufus Catchings describes how we can use natural and artificial sources of seismic waves to create high-resolution images of fault profiles. He also explai…
  continue reading
 
Haiyang Kehoe, USGS Seismograms contain information of an earthquake source, its path through the earth, and the local geologic conditions near a recording site. Ground shaking felt on Earth’s surface is modified by each of these contributions–the spatiotemporal evolution of rupture, three-dimensional subsurface structure, and site cond…
  continue reading
 
During the past couple of decades, we have discovered that stars with planetary systems are not rare, exceptional cases, as we once assumed, but actually quite commonplace. However, because exoplanets are like fireflies next to blinding searchlights, they are incredibly difficult to study. Yet, as Sara Seager explains, we are making astonishing pro…
  continue reading
 
Tara Nye, USGS Models of earthquake ground motion (both simulations and ground-motion models) can be likened to a puzzle with three primary pieces representing the earthquake source, site conditions, and source-to-site path. Early versions of these models were developed using average behavior of earthquakes across a variety of regions and tectonic …
  continue reading
 
Rashid Shams, University of Southern California Site response in sedimentary basins is partially governed by mechanisms associated with three-dimensional features. This includes the generation of propagating surface waves due to trapped and refracted seismic waves, focusing of seismic energy due to basin shape and size, and resonance of the entire …
  continue reading
 
Amy Williamson, University of California Berkeley Alerts sent through earthquake early warning (EEW) programs provide precious seconds for those alerted to take simple protective actions to mitigate their seismic risk. Programs like ShakeAlert have been providing alerts for felt earthquakes across the west coast of the US for almost 5 years. Earthq…
  continue reading
 
We have only a tantalizingly small number of sources of information about the Earth’s deep mantle. One of these comes from the rare diamonds that form at depths of about 650 km and make their way up to the base of the lithosphere, and then later to the surface via rare volcanic eruptions of kimberlite magma. In the podcast, Evan Smith talks about a…
  continue reading
 
James Biemiller, USGS An unresolved aspect of tsunami generation in great subduction earthquakes is the offshore competition between coseismic deformation mechanisms, such as shallow megathrust slip, slip on one or more splay faults, and off-fault plastic deformation. In this presentation, we first review results from data-constrained 3D dynamic ru…
  continue reading
 
Continental crust is derived from magmas that come from the mantle. So, naively, one might expect it to mirror the composition of the mantle. But our measurements indicate that it does not. Continental crust contains significantly more silica and less magnesium and iron than the mantle. How can we be sure this discrepancy is real, and what do we th…
  continue reading
 
Jaeseok Lee, Brown University Field observations indicate that fault systems are structurally complex, yet fault slip behavior has predominantly been attributed to local fault plane properties, such as friction parameters and roughness. Although relatively unexplored, emerging observations highlight the importance of fault system geometry in the me…
  continue reading
 
We tend to think of continental tectonic plates as rigid caps that float on the asthenospheric mantle, much like oceanic plates. But while some continental regions have the most rigid rocks on the planet, wide swathes of the continents are not rigid at all. In the podcast, Alex Copley explains how this differentiation comes about and points to evid…
  continue reading
 
Shanan Peters believes we need to assemble a global record of sedimentary rock coverage over geological time. As he explains in the podcast, such a record enables us to disentangle real changes in the long-term evolution of the Earth-life system from biases introduced by the unevenness and incompleteness of the sedimentary record. To this end, he a…
  continue reading
 
Complex life did not start in the Cambrian - it was there in the Ediacaran, the period that preceded the Cambrian. And the physical and chemical environment that prevailed in the early to middle Cambrian may well have arisen at earlier times in Earth history. So what exactly was the Cambrian explosion? And what made it happen when it did, between 5…
  continue reading
 
Jupiter's innermost Galilean moon, Io, is peppered with volcanos that are erupting almost all the time. In this episode, Scott Bolton, Principal Investigator of NASA's Juno mission to Jupiter, describes what we're learning from this space probe. Since its arrival in 2017, its orbit around the giant planet has progressively shifted to take it close …
  continue reading
 
We know that most magma originates in the Earth’s mantle. As it pushes up through the many kilometers of lithosphere to the surface, it pauses in one or more magma chambers or partially melted mush zones for periods of up to a few millennia before erupting. But while we have seismic evidence and models and support this picture, we have not hitherto…
  continue reading
 
At roughly 15-25-million-year intervals since the Archean, huge volumes of lava have spewed onto the Earth’s surface. These form the large igneous provinces, which are called flood basalts when they occur on continents. As Richard Ernst explains in the podcast, the eruption of a large igneous province can initiate the rifting of continents, disrupt…
  continue reading
 
Perhaps as many as five times over the course of Earth history, most of the continents gathered together to form a supercontinent. The supercontinents lasted on the order of a hundred million years before breaking apart and dispersing the continents. For decades, we theorized that this cycle of amalgamation and breakup was caused by near-surface te…
  continue reading
 
The Earth’s tectonic plates float on top of the ductile portion of the Earth’s mantle called the asthenosphere. The properties of the asthenosphere, in particular its viscosity, are thought to play a key role in determining how plates move, subduct, and how melt is produced and accumulates. We would like to know what the viscosity of the the asthen…
  continue reading
 
In many countries, nuclear power is a significant part of the energy mix being planned as part of the drive to achieve net-zero greenhouse-gas emissions. This means that we will be producing a lot more radioactive waste, some of it with half-lives that approach geological timescales, which are orders of magnitude greater than timescales associated …
  continue reading
 
We have learned a great deal about the geology of the Moon from remote sensing instruments aboard lunar orbiters, from robot landers, from the Apollo landings, and from samples returned to the Earth by Apollo and robot landings. But in 2025, when NASA plans to land humans on the Moon for the first time since 1972, a new phase of lunar exploration i…
  continue reading
 
At the core of Earth’s geological thermostat is the dissolution of silicate minerals in the presence of atmospheric carbon dioxide and liquid water. But at large scales, the effectiveness and temperature sensitivity of this reaction depends on geomorphological, climatic, and tectonic factors that vary greatly from place to place. As described in th…
  continue reading
 
Banded Iron Formations (BIFs) are a visually striking group of sedimentary rocks that are iron rich and almost exclusively deposited in the Precambrian. Their existence points to a major marine iron cycle that does not operate today. Several theories have been proposed to explain how the BIFs formed. While they all involve the precipitation of ferr…
  continue reading
 
The geological history of most regions is shaped by a whole range of processes that occur at temperatures ranging from above 800°C to as low as 100°C. The timing of events occurring over a particular temperature range can be recorded by a mineral which crystallizes over that range. The mineral calcite is suitable for recording low-temperature proce…
  continue reading
 
In this episode, Martin Van Kranendonk lays out a convincing case for life on Earth going back to at least 3.48 billion years ago. To find evidence for very ancient life, we need to look at rocks that have been largely undisturbed over billions of years of Earth history. Such rocks have been found in the Pilbara region of northwest Australia. As ex…
  continue reading
 
The Alps are the most intensively studied of all mountain chains, being readily accessed from the geological research centers of Europe. But despite this, there remains considerable uncertainty as to how they formed, especially in the Eocene (about 40 million years ago) when the events that led directly to Alpine mountain-building started. In the p…
  continue reading
 
The Franciscan Complex is a large accretionary prism that has been accreted onto the western margin of the North American continent. Unlike most such prisms, which are submarine, it is exposed on land, making it a magnet for researchers such as John Wakabayashi. In the podcast, he describes this remarkable complex and explains the mechanisms that m…
  continue reading
 
How can we tell if the sedimentary record is good enough to make solid inferences about the geological past? After all, it can be difficult, or even impossible, to infer what is missing, or indeed whether anything is missing at all. As he explains in the podcast, Bruce Levell tackles this question by combining fieldwork with systematic analysis bas…
  continue reading
 
In a recent episode, Nadja Drabon spoke about newly discovered zircon crystals that formed during the late Hadean and early Archean, when the Earth was between 500 million and a billion years old. The zircons revealed information about processes occurring in the Earth’s nascent crust, casting light on when and how modern-day plate tectonics may hav…
  continue reading
 
In 2011, a massive earthquake struck off the eastern coast of Japan. The destructive power of the earthquake was amplified by a giant tsunami that swept ashore, killing over 15,000 people. A major cause of the tsunami was the 50-m slip along the plate boundary fault between the subducting Pacific plate and the overriding North American plate. Patri…
  continue reading
 
Romain Jolivet studies active faults and the relative motion of tectonic plates. His research focuses on the relationship between slow, aseismic slip that occurs “silently” between earthquakes and the rapid slip accompanying earthquakes. As he describes in the podcast, he uses interferometric synthetic aperture radar (InSAR) images from radar satel…
  continue reading
 
The geological record shows that the Earth’s carbon cycle suffered over 30 major disruptions during the Phanerozoic. Some of the biggest ones were accompanied by mass extinctions. Dan Rothman analyzed these disruptions to find a pattern governing their magnitude and duration. As he explains in the podcast, this pattern is suggestive of a non-linear…
  continue reading
 
The Above Average Sports Quiz Thing returns for a special episode to celebrate the fact that Tom finally went to the dentist last summer! True to their word (as can be heard in an episode back in October 2021), following this momentous occasion they're all now running the 2023 TCS London Marathon in support of CardiomyopathyUK alongside friend of t…
  continue reading
 
Vanishingly few traces of the early Earth are known, so when a new source of zircon crystals of Hadean age is discovered, it makes a big difference to what we can infer about that eon. In the podcast, Nadja Drabon describes how she analyzed the new zircons she and her colleagues discovered and what they reveal about the Earth’s crust between about …
  continue reading
 
The Above Average (Not) Sports Quiz Thing reaches the end of another season with a tense finale as Tzevai and Will fight it out to see who'll be crowned Season Seven Champion. Tom can still throw a spanner in the works for either of them with a good performance but can he improve enough? For the festive finale there's another guest host making her …
  continue reading
 
Over the course of Earth history, many parts of the crust have undergone multiple episodes of metamorphism. Modern methods of dating and measuring trace-element abundances are now able to tease out the timing and conditions of the individual episodes. But new techniques were needed before these methods could be scaled up to unravel regional tectoni…
  continue reading
 
The Above Average (Not) Sports Quiz Thing find another guest host this week as friend of the show, Jon, returns with a bit of film and TV to test the team! It's tight at the top going into this one as Tzevai and Will sit at the top of the table tied on 25 points, while Tom props them up on not very many... If you want to skip straight to the quiz i…
  continue reading
 
This episode is the second of two of my conversation with Martin Gibling. In the first episode, we discuss fluvial deposits in the geological record and we trace the effect that the break-up of Pangea around 200 million years ago had on river systems. In this episode, we address the history of the rivers of Europe and the Americas, as well as the i…
  continue reading
 
Rivers can seem very ephemeral, often changing course or drying up entirely. Yet some rivers have persisted for tens or even hundreds of millions of years, even testifying to the breakup of Pangea, the most recent supercontinent, about 200 million years ago. On the one hand, their courses may be determined by tectonic processes such as the formatio…
  continue reading
 
The Above Average (Not) Sports Quiz Thing is without a guest host this week but the quizzing continues as they go head to head in a music related quiz which just so happens to celebrate the 100 years of the BBC! If you want to skip straight to the quiz it's around the 34 minute mark! We hope you enjoy the new season. Don't forget to leave us a rati…
  continue reading
 
The Above Average (Not) Sports Quiz Thing brings in another first time guest host this week as Andy writes a quiz on the back of a Wagamama's menu on a 4 hour train journey to come and ask us some questions about a place that's special to all of us. It's a pretty shitty city they say - it is of course, Swansea!! There's a bit less pre-amble in this…
  continue reading
 
The Above Average (Not) Sports Quiz Thing brings in another first time guest host this week as Jo finally takes time out from cleaning the bathroom to make an appearance on the show as Tzevai, Tom and Will take a trip round IKEA (and the rest of what Scandinavia has to offer) go head to head in her quiz! There's a lot of pre-amble in this one - if …
  continue reading
 
The Above Average (Not) Sports Quiz Thing continues with the second part of Dan's regal Queen Elizabeth II quiz. We left it with all to play for as Tzevai, Tom and Will battled to see who would be crowned (get it?!) the victor for this week. Who will be the Above Average King? We hope you enjoy the new season. Don't forget to leave us a rating, rev…
  continue reading
 
This episode is a bit of a departure from the objective approach to geology of past episodes in that here we address the subjective nature of various rocks as experienced by a rock climber with a literary bent. A rock climber’s very survival can depend on the properties of a rock encountered along a climbing route. This engenders a uniquely intense…
  continue reading
 
The Above Average (Not) Sports Quiz Thing continues with another non-sport quiz as our most illustrious guest host, Dan The Man, is back again with another excellent quiz! Tzevai, Tom and Will go head-to-head again to see who this week's winner is, except we've decided to split it into two weeks so you don't have to listen to it all in one go. Ther…
  continue reading
 
Loading …

Guia de referencia rapida