Artwork

Contenido proporcionado por Hugo Bowne-Anderson. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Hugo Bowne-Anderson o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Episode 41: Beyond Prompt Engineering: Can AI Learn to Set Its Own Goals?

43:51
 
Compartir
 

Manage episode 458285998 series 3317544
Contenido proporcionado por Hugo Bowne-Anderson. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Hugo Bowne-Anderson o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Hugo Bowne-Anderson hosts a panel discussion from the MLOps World and Generative AI Summit in Austin, exploring the long-term growth of AI by distinguishing real problem-solving from trend-based solutions. If you're navigating the evolving landscape of generative AI, productionizing models, or questioning the hype, this episode dives into the tough questions shaping the field.

The panel features:

  • Ben Taylor (Jepson) – CEO and Founder at VEOX Inc., with experience in AI exploration, genetic programming, and deep learning.
  • Joe Reis – Co-founder of Ternary Data and author of Fundamentals of Data Engineering.
  • Juan Sequeda – Principal Scientist and Head of AI Lab at Data.World, known for his expertise in knowledge graphs and the semantic web.

The discussion unpacks essential topics such as:

  • The shift from prompt engineering to goal engineering—letting AI iterate toward well-defined objectives.
  • Whether generative AI is having an electricity moment or more of a blockchain trajectory.
  • The combinatorial power of AI to explore new solutions, drawing parallels to AlphaZero redefining strategy games.
  • The POC-to-production gap and why AI projects stall.
  • Failure modes, hallucinations, and governance risks—and how to mitigate them.
  • The disconnect between executive optimism and employee workload.

Hugo also mentions his upcoming workshop on escaping Proof-of-Concept Purgatory, which has evolved into a Maven course "Building LLM Applications for Data Scientists and Software Engineers" launching in January. Vanishing Gradient listeners can get 25% off the course (use the code VG25), with $1,000 in Modal compute credits included.

A huge thanks to Dave Scharbach and the Toronto Machine Learning Society for organizing the conference and to the audience for their thoughtful questions.

As we head into the new year, this conversation offers a reality check amidst the growing AI agent hype.

LINKS

  continue reading

47 episodios

Artwork
iconCompartir
 
Manage episode 458285998 series 3317544
Contenido proporcionado por Hugo Bowne-Anderson. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Hugo Bowne-Anderson o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Hugo Bowne-Anderson hosts a panel discussion from the MLOps World and Generative AI Summit in Austin, exploring the long-term growth of AI by distinguishing real problem-solving from trend-based solutions. If you're navigating the evolving landscape of generative AI, productionizing models, or questioning the hype, this episode dives into the tough questions shaping the field.

The panel features:

  • Ben Taylor (Jepson) – CEO and Founder at VEOX Inc., with experience in AI exploration, genetic programming, and deep learning.
  • Joe Reis – Co-founder of Ternary Data and author of Fundamentals of Data Engineering.
  • Juan Sequeda – Principal Scientist and Head of AI Lab at Data.World, known for his expertise in knowledge graphs and the semantic web.

The discussion unpacks essential topics such as:

  • The shift from prompt engineering to goal engineering—letting AI iterate toward well-defined objectives.
  • Whether generative AI is having an electricity moment or more of a blockchain trajectory.
  • The combinatorial power of AI to explore new solutions, drawing parallels to AlphaZero redefining strategy games.
  • The POC-to-production gap and why AI projects stall.
  • Failure modes, hallucinations, and governance risks—and how to mitigate them.
  • The disconnect between executive optimism and employee workload.

Hugo also mentions his upcoming workshop on escaping Proof-of-Concept Purgatory, which has evolved into a Maven course "Building LLM Applications for Data Scientists and Software Engineers" launching in January. Vanishing Gradient listeners can get 25% off the course (use the code VG25), with $1,000 in Modal compute credits included.

A huge thanks to Dave Scharbach and the Toronto Machine Learning Society for organizing the conference and to the audience for their thoughtful questions.

As we head into the new year, this conversation offers a reality check amidst the growing AI agent hype.

LINKS

  continue reading

47 episodios

Tous les épisodes

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir