Artwork

Contenido proporcionado por The TDS team. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The TDS team o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

119. Jaime Sevilla - Projecting AI progress from compute trends

48:34
 
Compartir
 

Manage episode 325494514 series 2546508
Contenido proporcionado por The TDS team. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The TDS team o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

There’s an idea in machine learning that most of the progress we see in AI doesn’t come from new algorithms of model architectures. instead, some argue, progress almost entirely comes from scaling up compute power, datasets and model sizes — and besides those three ingredients, nothing else really matters.

Through that lens the history of AI becomes the history f processing power and compute budgets. And if that turns out to be true, then we might be able to do a decent job of predicting AI progress by studying trends in compute power and their impact on AI development.

And that’s why I wanted to talk to Jaime Sevilla, an independent researcher and AI forecaster, and affiliate researcher at Cambridge University’s Centre for the Study of Existential Risk, where he works on technological forecasting and understanding trends in AI in particular. His work’s been cited in a lot of cool places, including Our World In Data, who used his team’s data to put together an exposé on trends in compute. Jaime joined me to talk about compute trends and AI forecasting on this episode of the TDS podcast.

***

Intro music:

- Artist: Ron Gelinas

- Track Title: Daybreak Chill Blend (original mix)

- Link to Track: https://youtu.be/d8Y2sKIgFWc

***

Chapters:

  • 2:00 Trends in compute
  • 4:30 Transformative AI
  • 13:00 Industrial applications
  • 19:00 GPT-3 and scaling
  • 25:00 The two papers
  • 33:00 Biological anchors
  • 39:00 Timing of projects
  • 43:00 The trade-off
  • 47:45 Wrap-up
  continue reading

132 episodios

Artwork
iconCompartir
 
Manage episode 325494514 series 2546508
Contenido proporcionado por The TDS team. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The TDS team o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

There’s an idea in machine learning that most of the progress we see in AI doesn’t come from new algorithms of model architectures. instead, some argue, progress almost entirely comes from scaling up compute power, datasets and model sizes — and besides those three ingredients, nothing else really matters.

Through that lens the history of AI becomes the history f processing power and compute budgets. And if that turns out to be true, then we might be able to do a decent job of predicting AI progress by studying trends in compute power and their impact on AI development.

And that’s why I wanted to talk to Jaime Sevilla, an independent researcher and AI forecaster, and affiliate researcher at Cambridge University’s Centre for the Study of Existential Risk, where he works on technological forecasting and understanding trends in AI in particular. His work’s been cited in a lot of cool places, including Our World In Data, who used his team’s data to put together an exposé on trends in compute. Jaime joined me to talk about compute trends and AI forecasting on this episode of the TDS podcast.

***

Intro music:

- Artist: Ron Gelinas

- Track Title: Daybreak Chill Blend (original mix)

- Link to Track: https://youtu.be/d8Y2sKIgFWc

***

Chapters:

  • 2:00 Trends in compute
  • 4:30 Transformative AI
  • 13:00 Industrial applications
  • 19:00 GPT-3 and scaling
  • 25:00 The two papers
  • 33:00 Biological anchors
  • 39:00 Timing of projects
  • 43:00 The trade-off
  • 47:45 Wrap-up
  continue reading

132 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir