Artwork

Contenido proporcionado por The TDS team. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The TDS team o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

118. Angela Fan - Generating Wikipedia articles with AI

51:44
 
Compartir
 

Manage episode 324763986 series 2546508
Contenido proporcionado por The TDS team. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The TDS team o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Generating well-referenced and accurate Wikipedia articles has always been an important problem: Wikipedia has essentially become the Internet's encyclopedia of record, and hundreds of millions of people use it do understand the world.

But over the last decade Wikipedia has also become a critical source of training data for data-hungry text generation models. As a result, any shortcomings in Wikipedia’s content are at risk of being amplified by the text generation tools of the future. If one type of topic or person is chronically under-represented in Wikipedia’s corpus, we can expect generative text models to mirror — or even amplify — that under-representation in their outputs.

Through that lens, the project of Wikipedia article generation is about much more than it seems — it’s quite literally about setting the scene for the language generation systems of the future, and empowering humans to guide those systems in more robust ways.

That’s why I wanted to talk to Meta AI researcher Angela Fan, whose latest project is focused on generating reliable, accurate, and structured Wikipedia articles. She joined me to talk about her work, the implications of high-quality long-form text generation, and the future of human/AI collaboration on this episode of the TDS podcast.

---

Intro music:

- Artist: Ron Gelinas

- Track Title: Daybreak Chill Blend (original mix)

- Link to Track: https://youtu.be/d8Y2sKIgFWc

---

Chapters:

  • 1:45 Journey into Meta AI
  • 5:45 Transition to Wikipedia
  • 11:30 How articles are generated
  • 18:00 Quality of text
  • 21:30 Accuracy metrics
  • 25:30 Risk of hallucinated facts
  • 30:45 Keeping up with changes
  • 36:15 UI/UX problems
  • 45:00 Technical cause of gender imbalance
  • 51:00 Wrap-up
  continue reading

132 episodios

Artwork
iconCompartir
 
Manage episode 324763986 series 2546508
Contenido proporcionado por The TDS team. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The TDS team o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Generating well-referenced and accurate Wikipedia articles has always been an important problem: Wikipedia has essentially become the Internet's encyclopedia of record, and hundreds of millions of people use it do understand the world.

But over the last decade Wikipedia has also become a critical source of training data for data-hungry text generation models. As a result, any shortcomings in Wikipedia’s content are at risk of being amplified by the text generation tools of the future. If one type of topic or person is chronically under-represented in Wikipedia’s corpus, we can expect generative text models to mirror — or even amplify — that under-representation in their outputs.

Through that lens, the project of Wikipedia article generation is about much more than it seems — it’s quite literally about setting the scene for the language generation systems of the future, and empowering humans to guide those systems in more robust ways.

That’s why I wanted to talk to Meta AI researcher Angela Fan, whose latest project is focused on generating reliable, accurate, and structured Wikipedia articles. She joined me to talk about her work, the implications of high-quality long-form text generation, and the future of human/AI collaboration on this episode of the TDS podcast.

---

Intro music:

- Artist: Ron Gelinas

- Track Title: Daybreak Chill Blend (original mix)

- Link to Track: https://youtu.be/d8Y2sKIgFWc

---

Chapters:

  • 1:45 Journey into Meta AI
  • 5:45 Transition to Wikipedia
  • 11:30 How articles are generated
  • 18:00 Quality of text
  • 21:30 Accuracy metrics
  • 25:30 Risk of hallucinated facts
  • 30:45 Keeping up with changes
  • 36:15 UI/UX problems
  • 45:00 Technical cause of gender imbalance
  • 51:00 Wrap-up
  continue reading

132 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir