Artwork

Contenido proporcionado por MLSecOps.com. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente MLSecOps.com o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

The Intersection of MLSecOps and DataPrepOps; With Guest: Jennifer Prendki, PhD

34:40
 
Compartir
 

Manage episode 366663944 series 3461851
Contenido proporcionado por MLSecOps.com. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente MLSecOps.com o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Send us a text

On this week’s episode from The MLSecOps Podcast, we have the pleasure of hearing from Dr. Jennifer Prendki, founder and CEO of Alectio - The DataPrepOps Company. Alectio’s name comes from a blend of the acronym “AL,” standing for Active Learning, and the Latin term for the word “selection,” which is “lectio.”
In this episode, Dr. Prendki defines DataPrepOps for us and describes its contrasts to MLOps, along with how DataPrepOps intersects with MLSecOps best practices. She also discusses data quality, security risks in data science, and the role that data curation plays in helping to mitigate security risks in ML models.

Thanks for checking out the MLSecOps Podcast! Get involved with the MLSecOps Community and find more resources at https://community.mlsecops.com.
Additional tools and resources to check out:
Protect AI Guardian: Zero Trust for ML Models

Recon: Automated Red Teaming for GenAI

Protect AI’s ML Security-Focused Open Source Tools

LLM Guard Open Source Security Toolkit for LLM Interactions

Huntr - The World's First AI/Machine Learning Bug Bounty Platform

  continue reading

47 episodios

Artwork
iconCompartir
 
Manage episode 366663944 series 3461851
Contenido proporcionado por MLSecOps.com. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente MLSecOps.com o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Send us a text

On this week’s episode from The MLSecOps Podcast, we have the pleasure of hearing from Dr. Jennifer Prendki, founder and CEO of Alectio - The DataPrepOps Company. Alectio’s name comes from a blend of the acronym “AL,” standing for Active Learning, and the Latin term for the word “selection,” which is “lectio.”
In this episode, Dr. Prendki defines DataPrepOps for us and describes its contrasts to MLOps, along with how DataPrepOps intersects with MLSecOps best practices. She also discusses data quality, security risks in data science, and the role that data curation plays in helping to mitigate security risks in ML models.

Thanks for checking out the MLSecOps Podcast! Get involved with the MLSecOps Community and find more resources at https://community.mlsecops.com.
Additional tools and resources to check out:
Protect AI Guardian: Zero Trust for ML Models

Recon: Automated Red Teaming for GenAI

Protect AI’s ML Security-Focused Open Source Tools

LLM Guard Open Source Security Toolkit for LLM Interactions

Huntr - The World's First AI/Machine Learning Bug Bounty Platform

  continue reading

47 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir