Artwork

Contenido proporcionado por MLSecOps.com. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente MLSecOps.com o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

MLSecOps: Red Teaming, Threat Modeling, and Attack Methods of AI Apps; With Guest: Johann Rehberger

40:29
 
Compartir
 

Manage episode 361711037 series 3461851
Contenido proporcionado por MLSecOps.com. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente MLSecOps.com o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Send us a text

Johann Rehberger is an entrepreneur and Red Team Director at Electronic Arts. His career experience includes time with Microsoft and Uber, and he is the author of “Cybersecurity Attacks – Red Team Strategies: A practical guide to building a penetration testing program having homefield advantage” and the popular blog, EmbraceTheRed.com.
In this episode, Johann offers insights about how to apply a traditional security engineering mindset and red team approach to analyzing the AI/ML attack surface. We also discuss ways that organizations can adapt their traditional security postures to address the unique challenges of ML security.

Thanks for checking out the MLSecOps Podcast! Get involved with the MLSecOps Community and find more resources at https://community.mlsecops.com.
Additional tools and resources to check out:
Protect AI Guardian: Zero Trust for ML Models

Recon: Automated Red Teaming for GenAI

Protect AI’s ML Security-Focused Open Source Tools

LLM Guard Open Source Security Toolkit for LLM Interactions

Huntr - The World's First AI/Machine Learning Bug Bounty Platform

  continue reading

48 episodios

Artwork
iconCompartir
 
Manage episode 361711037 series 3461851
Contenido proporcionado por MLSecOps.com. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente MLSecOps.com o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Send us a text

Johann Rehberger is an entrepreneur and Red Team Director at Electronic Arts. His career experience includes time with Microsoft and Uber, and he is the author of “Cybersecurity Attacks – Red Team Strategies: A practical guide to building a penetration testing program having homefield advantage” and the popular blog, EmbraceTheRed.com.
In this episode, Johann offers insights about how to apply a traditional security engineering mindset and red team approach to analyzing the AI/ML attack surface. We also discuss ways that organizations can adapt their traditional security postures to address the unique challenges of ML security.

Thanks for checking out the MLSecOps Podcast! Get involved with the MLSecOps Community and find more resources at https://community.mlsecops.com.
Additional tools and resources to check out:
Protect AI Guardian: Zero Trust for ML Models

Recon: Automated Red Teaming for GenAI

Protect AI’s ML Security-Focused Open Source Tools

LLM Guard Open Source Security Toolkit for LLM Interactions

Huntr - The World's First AI/Machine Learning Bug Bounty Platform

  continue reading

48 episodios

Tüm bölümler

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir