Artwork

Contenido proporcionado por MRS Bulletin. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente MRS Bulletin o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Episode 20: Resistance of analog deep learning device responds in ~5 nanoseconds

5:59
 
Compartir
 

Manage episode 345944970 series 2602554
Contenido proporcionado por MRS Bulletin. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente MRS Bulletin o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

In this podcast episode, MRS Bulletin’s Sophia Chen interviews Murat Onen, a postdoctoral researcher at the Massachusetts Institute of Technology, about analog deep learning that could help lower the cost of training artificial intelligence (AI). The programmable analog device stores information in the same place where the information is processed. The resistor’s main material is tungsten oxide, which can be reversibly doped with protons from an electrolyte material known as phosphosilicate glass, or PSG, layered on top of the tungsten oxide. Palladium is above the PSG layer, which is a reservoir for the protons when they are shuttled out of the tungsten oxide to make it more resistive. “When protons get in, it becomes more conductive. When the protons go out, it becomes less conductive,” says Onen. The resistance of this device responds in about 5 ns. This work was published in a recent issue of Science (doi:10.1126/science.abp8064).

  continue reading

103 episodios

Artwork
iconCompartir
 
Manage episode 345944970 series 2602554
Contenido proporcionado por MRS Bulletin. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente MRS Bulletin o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

In this podcast episode, MRS Bulletin’s Sophia Chen interviews Murat Onen, a postdoctoral researcher at the Massachusetts Institute of Technology, about analog deep learning that could help lower the cost of training artificial intelligence (AI). The programmable analog device stores information in the same place where the information is processed. The resistor’s main material is tungsten oxide, which can be reversibly doped with protons from an electrolyte material known as phosphosilicate glass, or PSG, layered on top of the tungsten oxide. Palladium is above the PSG layer, which is a reservoir for the protons when they are shuttled out of the tungsten oxide to make it more resistive. “When protons get in, it becomes more conductive. When the protons go out, it becomes less conductive,” says Onen. The resistance of this device responds in about 5 ns. This work was published in a recent issue of Science (doi:10.1126/science.abp8064).

  continue reading

103 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir