Artwork

Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

What Is KBQA and What Are Its Benchmarks?

7:31
 
Compartir
 

Manage episode 422576789 series 3474148
Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/what-is-kbqa-and-what-are-its-benchmarks.
The KBQA task aims to make large knowledge bases accessible by natural language.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #llms, #seq2seq, #natural-language-processing, #kbqa, #large-knowledge-bases, #semantic-parsing, #entity-linking, #kbqa-benchmarks, and more.
This story was written by: @fewshot. Learn more about this writer by checking @fewshot's about page, and for more stories, please visit hackernoon.com.
The KBQA task aims to make large knowledge bases accessible by natural language. One common approach is semantic parsing where a natural language query is translated into a formal logical form, which is then executed to retrieve an answer from the knowledge base. To handle large KBs, one method is to formulate SP as a multi-staged search problem.

  continue reading

472 episodios

Artwork
iconCompartir
 
Manage episode 422576789 series 3474148
Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/what-is-kbqa-and-what-are-its-benchmarks.
The KBQA task aims to make large knowledge bases accessible by natural language.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #llms, #seq2seq, #natural-language-processing, #kbqa, #large-knowledge-bases, #semantic-parsing, #entity-linking, #kbqa-benchmarks, and more.
This story was written by: @fewshot. Learn more about this writer by checking @fewshot's about page, and for more stories, please visit hackernoon.com.
The KBQA task aims to make large knowledge bases accessible by natural language. One common approach is semantic parsing where a natural language query is translated into a formal logical form, which is then executed to retrieve an answer from the knowledge base. To handle large KBs, one method is to formulate SP as a multi-staged search problem.

  continue reading

472 episodios

Все серии

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir