Artwork

Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

How to Structure Your Machine Learning Team for Success

11:44
 
Compartir
 

Manage episode 419253629 series 3474148
Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/how-to-structure-your-machine-learning-team-for-success.
This article discusses alternative ML team organizational models and recommendations for matching team structures to the company's stage of development.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #ai, #future-of-ai, #machine-learning, #organization-design, #business-strategy, #team-building, #team-productivity, #hackernoon-top-story, and more.
This story was written by: @cheparukhin. Learn more about this writer by checking @cheparukhin's about page, and for more stories, please visit hackernoon.com.
Machine Learning teams are vital for innovation. Choose team structures based on your company's stage: Centralized for startups, Federated for growth, and Embedded for integration. Transition thoughtfully and achieve success by aligning structure with growth.

  continue reading

472 episodios

Artwork
iconCompartir
 
Manage episode 419253629 series 3474148
Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/how-to-structure-your-machine-learning-team-for-success.
This article discusses alternative ML team organizational models and recommendations for matching team structures to the company's stage of development.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #ai, #future-of-ai, #machine-learning, #organization-design, #business-strategy, #team-building, #team-productivity, #hackernoon-top-story, and more.
This story was written by: @cheparukhin. Learn more about this writer by checking @cheparukhin's about page, and for more stories, please visit hackernoon.com.
Machine Learning teams are vital for innovation. Choose team structures based on your company's stage: Centralized for startups, Federated for growth, and Embedded for integration. Transition thoughtfully and achieve success by aligning structure with growth.

  continue reading

472 episodios

Все серии

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir