Artwork

Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Effortless 2D-Guided, 3D Gaussian Segmentation: Related Work

5:53
 
Compartir
 

Manage episode 422252432 series 3474148
Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/effortless-2d-guided-3d-gaussian-segmentation-related-work.
Efficient 3D Gaussian segmentation guided by 2D models achieves fast, accurate multi-object segmentation, advancing 3D scene understanding and editing.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #machine-learning, #gaussian-clustering, #3d-gaussian-segmentation, #3d-scene-understanding, #2d-to-3d-supervision, #ai-in-3d-graphics, #semantic-information-learning, #point-based-rendering, and more.
This story was written by: @escholar. Learn more about this writer by checking @escholar's about page, and for more stories, please visit hackernoon.com.
3D Gaussian, a recently proposed explicit representation method, has attained remarkable achievements in three-dimensional scene reconstruction. Using a series of scene images and corresponding camera data, it employs 3D Gaussians to depict scene objects. Gaussian Splatting then utilizes point-based rendering for efficient 3D to 2D projection.

  continue reading

472 episodios

Artwork
iconCompartir
 
Manage episode 422252432 series 3474148
Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/effortless-2d-guided-3d-gaussian-segmentation-related-work.
Efficient 3D Gaussian segmentation guided by 2D models achieves fast, accurate multi-object segmentation, advancing 3D scene understanding and editing.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #machine-learning, #gaussian-clustering, #3d-gaussian-segmentation, #3d-scene-understanding, #2d-to-3d-supervision, #ai-in-3d-graphics, #semantic-information-learning, #point-based-rendering, and more.
This story was written by: @escholar. Learn more about this writer by checking @escholar's about page, and for more stories, please visit hackernoon.com.
3D Gaussian, a recently proposed explicit representation method, has attained remarkable achievements in three-dimensional scene reconstruction. Using a series of scene images and corresponding camera data, it employs 3D Gaussians to depict scene objects. Gaussian Splatting then utilizes point-based rendering for efficient 3D to 2D projection.

  continue reading

472 episodios

Все серии

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir