Artwork

Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Effective Anomaly Detection Pipeline for Amazon Reviews: References & Appendix

18:25
 
Compartir
 

Manage episode 426250797 series 3474148
Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/effective-anomaly-detection-pipeline-for-amazon-reviews-references-and-appendix.
Explore findings from a study on an anomaly detection pipeline for Amazon reviews using MPNet embeddings.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #transformers, #anomaly-detection, #nlp-for-anomaly-detection, #explainability-in-ml, #machine-learning-classifiers, #text-specific-ad-models, #text-encoding-techniques, #explainable-ai, and more.
This story was written by: @textmodels. Learn more about this writer by checking @textmodels's about page, and for more stories, please visit hackernoon.com.
This study introduces an effective pipeline for detecting anomalous Amazon reviews using MPNet embeddings. It evaluates SHAP, term frequency, and GPT-3 for explainability, revealing user preferences and computational challenges. Future research may explore broader surveys and integrating GPT-3 throughout the pipeline for enhanced performance.

  continue reading

472 episodios

Artwork
iconCompartir
 
Manage episode 426250797 series 3474148
Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/effective-anomaly-detection-pipeline-for-amazon-reviews-references-and-appendix.
Explore findings from a study on an anomaly detection pipeline for Amazon reviews using MPNet embeddings.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #transformers, #anomaly-detection, #nlp-for-anomaly-detection, #explainability-in-ml, #machine-learning-classifiers, #text-specific-ad-models, #text-encoding-techniques, #explainable-ai, and more.
This story was written by: @textmodels. Learn more about this writer by checking @textmodels's about page, and for more stories, please visit hackernoon.com.
This study introduces an effective pipeline for detecting anomalous Amazon reviews using MPNet embeddings. It evaluates SHAP, term frequency, and GPT-3 for explainability, revealing user preferences and computational challenges. Future research may explore broader surveys and integrating GPT-3 throughout the pipeline for enhanced performance.

  continue reading

472 episodios

Все серии

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir