Artwork

Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

DIY Fake News Detector: Unmask misinformation with Recurrent Neural Networks

7:02
 
Compartir
 

Manage episode 430865970 series 3474148
Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/diy-fake-news-detector-unmask-misinformation-with-recurrent-neural-networks.
Explore the power of RNNs in fake news detection, from data preprocessing to model evaluation, showcasing their potential to combat misinformation.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #deep-learning, #fake-news, #machine-learning, #lstm, #rnn, #misinformation, #fake-news-detector, #recurrent-neural-networks, and more.
This story was written by: @kisican. Learn more about this writer by checking @kisican's about page, and for more stories, please visit hackernoon.com.
Though challenging, it is equally rewarding to be in a position to build a fake news detection system using RNNs. This code will walk you through the stage of data preprocessing to model evaluation. The power of RNNs, especially LSTMs, is utilised while decoding sequential data to make a distinction between real and fake news. If we could fine-tune these models and get hold of global news datasets, AI can then be core in battling misinformation.

  continue reading

476 episodios

Artwork
iconCompartir
 
Manage episode 430865970 series 3474148
Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/diy-fake-news-detector-unmask-misinformation-with-recurrent-neural-networks.
Explore the power of RNNs in fake news detection, from data preprocessing to model evaluation, showcasing their potential to combat misinformation.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #deep-learning, #fake-news, #machine-learning, #lstm, #rnn, #misinformation, #fake-news-detector, #recurrent-neural-networks, and more.
This story was written by: @kisican. Learn more about this writer by checking @kisican's about page, and for more stories, please visit hackernoon.com.
Though challenging, it is equally rewarding to be in a position to build a fake news detection system using RNNs. This code will walk you through the stage of data preprocessing to model evaluation. The power of RNNs, especially LSTMs, is utilised while decoding sequential data to make a distinction between real and fake news. If we could fine-tune these models and get hold of global news datasets, AI can then be core in battling misinformation.

  continue reading

476 episodios

すべてのエピソード

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir