Artwork

Contenido proporcionado por Machine Learning Street Talk (MLST). Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Machine Learning Street Talk (MLST) o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

How Do AI Models Actually Think? - Laura Ruis

1:18:01
 
Compartir
 

Manage episode 462004737 series 2803422
Contenido proporcionado por Machine Learning Street Talk (MLST). Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Machine Learning Street Talk (MLST) o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Laura Ruis, a PhD student at University College London and researcher at Cohere, explains her groundbreaking research into how large language models (LLMs) perform reasoning tasks, the fundamental mechanisms underlying LLM reasoning capabilities, and whether these models primarily rely on retrieval or develop procedural knowledge.

SPONSOR MESSAGES:

***

CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments.

https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events?

Goto https://tufalabs.ai/

***

TOC

1. LLM Foundations and Learning

1.1 Scale and Learning in Language Models [00:00:00]

1.2 Procedural Knowledge vs Fact Retrieval [00:03:40]

1.3 Influence Functions and Model Analysis [00:07:40]

1.4 Role of Code in LLM Reasoning [00:11:10]

1.5 Semantic Understanding and Physical Grounding [00:19:30]

2. Reasoning Architectures and Measurement

2.1 Measuring Understanding and Reasoning in Language Models [00:23:10]

2.2 Formal vs Approximate Reasoning and Model Creativity [00:26:40]

2.3 Symbolic vs Subsymbolic Computation Debate [00:34:10]

2.4 Neural Network Architectures and Tensor Product Representations [00:40:50]

3. AI Agency and Risk Assessment

3.1 Agency and Goal-Directed Behavior in Language Models [00:45:10]

3.2 Defining and Measuring Agency in AI Systems [00:49:50]

3.3 Core Knowledge Systems and Agency Detection [00:54:40]

3.4 Language Models as Agent Models and Simulator Theory [01:03:20]

3.5 AI Safety and Societal Control Mechanisms [01:07:10]

3.6 Evolution of AI Capabilities and Emergent Risks [01:14:20]

REFS:

[00:01:10] Procedural Knowledge in Pretraining & LLM Reasoning

Ruis et al., 2024

https://arxiv.org/abs/2411.12580

[00:03:50] EK-FAC Influence Functions in Large LMs

Grosse et al., 2023

https://arxiv.org/abs/2308.03296

[00:13:05] Surfaces and Essences: Analogy as the Core of Cognition

Hofstadter & Sander

https://www.amazon.com/Surfaces-Essences-Analogy-Fuel-Thinking/dp/0465018475

[00:13:45] Wittgenstein on Language Games

https://plato.stanford.edu/entries/wittgenstein/

[00:14:30] Montague Semantics for Natural Language

https://plato.stanford.edu/entries/montague-semantics/

[00:19:35] The Chinese Room Argument

David Cole

https://plato.stanford.edu/entries/chinese-room/

[00:19:55] ARC: Abstraction and Reasoning Corpus

François Chollet

https://arxiv.org/abs/1911.01547

[00:24:20] Systematic Generalization in Neural Nets

Lake & Baroni, 2023

https://www.nature.com/articles/s41586-023-06668-3

[00:27:40] Open-Endedness & Creativity in AI

Tim Rocktäschel

https://arxiv.org/html/2406.04268v1

[00:30:50] Fodor & Pylyshyn on Connectionism

https://www.sciencedirect.com/science/article/abs/pii/0010027788900315

[00:31:30] Tensor Product Representations

Smolensky, 1990

https://www.sciencedirect.com/science/article/abs/pii/000437029090007M

[00:35:50] DreamCoder: Wake-Sleep Program Synthesis

Kevin Ellis et al.

https://courses.cs.washington.edu/courses/cse599j1/22sp/papers/dreamcoder.pdf

[00:36:30] Compositional Generalization Benchmarks

Ruis, Lake et al., 2022

https://arxiv.org/pdf/2202.10745

[00:40:30] RNNs & Tensor Products

McCoy et al., 2018

https://arxiv.org/abs/1812.08718

[00:46:10] Formal Causal Definition of Agency

Kenton et al.

https://arxiv.org/pdf/2208.08345v2

[00:48:40] Agency in Language Models

Sumers et al.

https://arxiv.org/abs/2309.02427

[00:55:20] Heider & Simmel’s Moving Shapes Experiment

https://www.nature.com/articles/s41598-024-65532-0

[01:00:40] Language Models as Agent Models

Jacob Andreas, 2022

https://arxiv.org/abs/2212.01681

[01:13:35] Pragmatic Understanding in LLMs

Ruis et al.

https://arxiv.org/abs/2210.14986

  continue reading

238 episodios

Artwork
iconCompartir
 
Manage episode 462004737 series 2803422
Contenido proporcionado por Machine Learning Street Talk (MLST). Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Machine Learning Street Talk (MLST) o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Laura Ruis, a PhD student at University College London and researcher at Cohere, explains her groundbreaking research into how large language models (LLMs) perform reasoning tasks, the fundamental mechanisms underlying LLM reasoning capabilities, and whether these models primarily rely on retrieval or develop procedural knowledge.

SPONSOR MESSAGES:

***

CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments.

https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events?

Goto https://tufalabs.ai/

***

TOC

1. LLM Foundations and Learning

1.1 Scale and Learning in Language Models [00:00:00]

1.2 Procedural Knowledge vs Fact Retrieval [00:03:40]

1.3 Influence Functions and Model Analysis [00:07:40]

1.4 Role of Code in LLM Reasoning [00:11:10]

1.5 Semantic Understanding and Physical Grounding [00:19:30]

2. Reasoning Architectures and Measurement

2.1 Measuring Understanding and Reasoning in Language Models [00:23:10]

2.2 Formal vs Approximate Reasoning and Model Creativity [00:26:40]

2.3 Symbolic vs Subsymbolic Computation Debate [00:34:10]

2.4 Neural Network Architectures and Tensor Product Representations [00:40:50]

3. AI Agency and Risk Assessment

3.1 Agency and Goal-Directed Behavior in Language Models [00:45:10]

3.2 Defining and Measuring Agency in AI Systems [00:49:50]

3.3 Core Knowledge Systems and Agency Detection [00:54:40]

3.4 Language Models as Agent Models and Simulator Theory [01:03:20]

3.5 AI Safety and Societal Control Mechanisms [01:07:10]

3.6 Evolution of AI Capabilities and Emergent Risks [01:14:20]

REFS:

[00:01:10] Procedural Knowledge in Pretraining & LLM Reasoning

Ruis et al., 2024

https://arxiv.org/abs/2411.12580

[00:03:50] EK-FAC Influence Functions in Large LMs

Grosse et al., 2023

https://arxiv.org/abs/2308.03296

[00:13:05] Surfaces and Essences: Analogy as the Core of Cognition

Hofstadter & Sander

https://www.amazon.com/Surfaces-Essences-Analogy-Fuel-Thinking/dp/0465018475

[00:13:45] Wittgenstein on Language Games

https://plato.stanford.edu/entries/wittgenstein/

[00:14:30] Montague Semantics for Natural Language

https://plato.stanford.edu/entries/montague-semantics/

[00:19:35] The Chinese Room Argument

David Cole

https://plato.stanford.edu/entries/chinese-room/

[00:19:55] ARC: Abstraction and Reasoning Corpus

François Chollet

https://arxiv.org/abs/1911.01547

[00:24:20] Systematic Generalization in Neural Nets

Lake & Baroni, 2023

https://www.nature.com/articles/s41586-023-06668-3

[00:27:40] Open-Endedness & Creativity in AI

Tim Rocktäschel

https://arxiv.org/html/2406.04268v1

[00:30:50] Fodor & Pylyshyn on Connectionism

https://www.sciencedirect.com/science/article/abs/pii/0010027788900315

[00:31:30] Tensor Product Representations

Smolensky, 1990

https://www.sciencedirect.com/science/article/abs/pii/000437029090007M

[00:35:50] DreamCoder: Wake-Sleep Program Synthesis

Kevin Ellis et al.

https://courses.cs.washington.edu/courses/cse599j1/22sp/papers/dreamcoder.pdf

[00:36:30] Compositional Generalization Benchmarks

Ruis, Lake et al., 2022

https://arxiv.org/pdf/2202.10745

[00:40:30] RNNs & Tensor Products

McCoy et al., 2018

https://arxiv.org/abs/1812.08718

[00:46:10] Formal Causal Definition of Agency

Kenton et al.

https://arxiv.org/pdf/2208.08345v2

[00:48:40] Agency in Language Models

Sumers et al.

https://arxiv.org/abs/2309.02427

[00:55:20] Heider & Simmel’s Moving Shapes Experiment

https://www.nature.com/articles/s41598-024-65532-0

[01:00:40] Language Models as Agent Models

Jacob Andreas, 2022

https://arxiv.org/abs/2212.01681

[01:13:35] Pragmatic Understanding in LLMs

Ruis et al.

https://arxiv.org/abs/2210.14986

  continue reading

238 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir