Artwork

Contenido proporcionado por Linear Digressions, Ben Jaffe, and Katie Malone. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Linear Digressions, Ben Jaffe, and Katie Malone o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Causal Trees

15:27
 
Compartir
 

Manage episode 261379384 series 2527355
Contenido proporcionado por Linear Digressions, Ben Jaffe, and Katie Malone. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Linear Digressions, Ben Jaffe, and Katie Malone o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
What do you get when you combine the causal inference needs of econometrics with the data-driven methodology of machine learning? Usually these two don’t go well together (deriving causal conclusions from naive data methods leads to biased answers) but economists Susan Athey and Guido Imbens are on the case. This episodes explores their algorithm for recursively partitioning a dataset to find heterogeneous treatment effects, or for you ML nerds, applying decision trees to causal inference problems. It’s not a free lunch, but for those (like us!) who love crossover topics, causal trees are a smart approach from one field hopping the fence to another. Relevant links: https://www.pnas.org/content/113/27/7353
  continue reading

291 episodios

Artwork

Causal Trees

Linear Digressions

23 subscribers

published

iconCompartir
 
Manage episode 261379384 series 2527355
Contenido proporcionado por Linear Digressions, Ben Jaffe, and Katie Malone. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Linear Digressions, Ben Jaffe, and Katie Malone o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
What do you get when you combine the causal inference needs of econometrics with the data-driven methodology of machine learning? Usually these two don’t go well together (deriving causal conclusions from naive data methods leads to biased answers) but economists Susan Athey and Guido Imbens are on the case. This episodes explores their algorithm for recursively partitioning a dataset to find heterogeneous treatment effects, or for you ML nerds, applying decision trees to causal inference problems. It’s not a free lunch, but for those (like us!) who love crossover topics, causal trees are a smart approach from one field hopping the fence to another. Relevant links: https://www.pnas.org/content/113/27/7353
  continue reading

291 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir