Artwork

Contenido proporcionado por Jay Shah. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Jay Shah o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Using AI for Social Good | Dr. Milind Tambe

33:33
 
Compartir
 

Manage episode 296481738 series 2859018
Contenido proporcionado por Jay Shah. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Jay Shah o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Dr. Milind Tambe is a Professor of Computer Science at Harvard University and Director of the Center for Research in Computation and Society. He is also the Director of AI for Social Good at Google Research in India. He has been leading and working on projects that are creating an impact, ranging from wildlife conservation, public health, and safety using AI techniques.
Time Stamps:
00:00 Introductions
01:05 In concrete terms what projects are you currently working on?
03:18 Do you think there is a disconnect between the scientific/tech communities and the social sector while trying to make use of AI? If so, who should be taking more lead for making that gap small?
05:26 Do these applications in any way inspire novelty in the theoretical aspects of Machine Learning research?
08:15 How do you design and evaluate the impact of these projects?
11:20 How do you define Interpretable or Explainable AI, at the intersection of social sciences and AI?
16:50 Concern of AI usage and Automation. Where do you think the balance lies?
19:50 What bits students can do researchers to work on projects that have a real impact and just pure novelty?
23:45 Roadblocks to more widespread adoption of AI tools for social good?
29:18 What motivates you personally about using AI for social good and not just theoretical exploration of new techniques?
Prof. Milind Tambe's Homepage: https://teamcore.seas.harvard.edu/tambe
About the Host:
Jay is a Ph.D. student at Arizona State University, doing research on building Interpretable AI models for Medical Diagnosis.
Jay Shah: https://www.linkedin.com/in/shahjay22/
You can reach out to https://www.public.asu.edu/~jgshah1/ for any queries.
Stay tuned for upcoming webinars!
#aiforsocialgood #googleai #ai #machinelearning #socialimpact
***Disclaimer: The information contained in this video represents the views and opinions of the speaker and does not necessarily represent the views or opinions of any institution. It does not constitute an endorsement by any Institution or its affiliates of such video content.***

Checkout these Podcasts on YouTube: https://www.youtube.com/c/JayShahml
About the author: https://www.public.asu.edu/~jgshah1/

  continue reading

92 episodios

Artwork
iconCompartir
 
Manage episode 296481738 series 2859018
Contenido proporcionado por Jay Shah. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Jay Shah o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Dr. Milind Tambe is a Professor of Computer Science at Harvard University and Director of the Center for Research in Computation and Society. He is also the Director of AI for Social Good at Google Research in India. He has been leading and working on projects that are creating an impact, ranging from wildlife conservation, public health, and safety using AI techniques.
Time Stamps:
00:00 Introductions
01:05 In concrete terms what projects are you currently working on?
03:18 Do you think there is a disconnect between the scientific/tech communities and the social sector while trying to make use of AI? If so, who should be taking more lead for making that gap small?
05:26 Do these applications in any way inspire novelty in the theoretical aspects of Machine Learning research?
08:15 How do you design and evaluate the impact of these projects?
11:20 How do you define Interpretable or Explainable AI, at the intersection of social sciences and AI?
16:50 Concern of AI usage and Automation. Where do you think the balance lies?
19:50 What bits students can do researchers to work on projects that have a real impact and just pure novelty?
23:45 Roadblocks to more widespread adoption of AI tools for social good?
29:18 What motivates you personally about using AI for social good and not just theoretical exploration of new techniques?
Prof. Milind Tambe's Homepage: https://teamcore.seas.harvard.edu/tambe
About the Host:
Jay is a Ph.D. student at Arizona State University, doing research on building Interpretable AI models for Medical Diagnosis.
Jay Shah: https://www.linkedin.com/in/shahjay22/
You can reach out to https://www.public.asu.edu/~jgshah1/ for any queries.
Stay tuned for upcoming webinars!
#aiforsocialgood #googleai #ai #machinelearning #socialimpact
***Disclaimer: The information contained in this video represents the views and opinions of the speaker and does not necessarily represent the views or opinions of any institution. It does not constitute an endorsement by any Institution or its affiliates of such video content.***

Checkout these Podcasts on YouTube: https://www.youtube.com/c/JayShahml
About the author: https://www.public.asu.edu/~jgshah1/

  continue reading

92 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida