Artificial Intelligence has suddenly gone from the fringes of science to being everywhere. So how did we get here? And where's this all heading? In this new series of Science Friction, we're finding out.
…
continue reading
Contenido proporcionado por Sean P. Kane, PharmD, BCPS, Sean P. Kane, and PharmD; Khyati Patel. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Sean P. Kane, PharmD, BCPS, Sean P. Kane, and PharmD; Khyati Patel o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !
¡Desconecta con la aplicación Player FM !
181 - From Meds to Machine Learning: How AI is (and will) Revolutionizing Pharmacy Practice
MP3•Episodio en casa
Manage episode 412810649 series 70056
Contenido proporcionado por Sean P. Kane, PharmD, BCPS, Sean P. Kane, and PharmD; Khyati Patel. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Sean P. Kane, PharmD, BCPS, Sean P. Kane, and PharmD; Khyati Patel o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
In this episode, we discuss artificial intelligence large language models (LLMs) and how these will impact the future of the practice of pharmacy.
Key Concepts
- Generative AI with large language models (LLMs) have already changed how healthcare is delivered to patients. In the future, these changes will be more substantial and require pharmacists and other healthcare professionals to understand the benefits and downsides of this technology.
- Commercial LLMs, such as ChatGPT, are not HIPAA compliant and should not be used with protected health information. Companies currently offer software products that are HIPAA compliant and can integrate directly into electronic health records in a HIPAA-compliant manner.
- Currently, most commercial use cases of LLMs for healthcare providers focus on expediting or simplifying the documentation process (e.g. generating a first draft of a progress note or summarizing a patient encounter from an audio recording).
- In the future, LLMs will be used to perform a variety of clinical tasks, including drug interaction checking, renal dose adjustments, duplication of therapy, and even the appropriateness of a patient’s drug regimen for a given medical condition. These clinical tasks will almost certainly be done as a “first pass” to highlight or flag specific aspects of a patient’s chart and will then be reviewed by a licensed (human) healthcare provider as a final check prior to clinical decisions being made.
References
- Large Language Models (LLMs) referenced in the episode: https://chat.openai.com, https://coral.cohere.com, https://claude.ai, https://gemini.google.com.
- Prompt Engineering Guide (https://www.promptingguide.ai/techniques)
- OpenAI - Prompt engineering (https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results)
200 episodios
181 - From Meds to Machine Learning: How AI is (and will) Revolutionizing Pharmacy Practice
HelixTalk - Rosalind Franklin University's College of Pharmacy Podcast
MP3•Episodio en casa
Manage episode 412810649 series 70056
Contenido proporcionado por Sean P. Kane, PharmD, BCPS, Sean P. Kane, and PharmD; Khyati Patel. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Sean P. Kane, PharmD, BCPS, Sean P. Kane, and PharmD; Khyati Patel o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
In this episode, we discuss artificial intelligence large language models (LLMs) and how these will impact the future of the practice of pharmacy.
Key Concepts
- Generative AI with large language models (LLMs) have already changed how healthcare is delivered to patients. In the future, these changes will be more substantial and require pharmacists and other healthcare professionals to understand the benefits and downsides of this technology.
- Commercial LLMs, such as ChatGPT, are not HIPAA compliant and should not be used with protected health information. Companies currently offer software products that are HIPAA compliant and can integrate directly into electronic health records in a HIPAA-compliant manner.
- Currently, most commercial use cases of LLMs for healthcare providers focus on expediting or simplifying the documentation process (e.g. generating a first draft of a progress note or summarizing a patient encounter from an audio recording).
- In the future, LLMs will be used to perform a variety of clinical tasks, including drug interaction checking, renal dose adjustments, duplication of therapy, and even the appropriateness of a patient’s drug regimen for a given medical condition. These clinical tasks will almost certainly be done as a “first pass” to highlight or flag specific aspects of a patient’s chart and will then be reviewed by a licensed (human) healthcare provider as a final check prior to clinical decisions being made.
References
- Large Language Models (LLMs) referenced in the episode: https://chat.openai.com, https://coral.cohere.com, https://claude.ai, https://gemini.google.com.
- Prompt Engineering Guide (https://www.promptingguide.ai/techniques)
- OpenAI - Prompt engineering (https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results)
200 episodios
Wszystkie odcinki
×Bienvenido a Player FM!
Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.