Artwork

Contenido proporcionado por Kai Kunze. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Kai Kunze o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

ISWC 2024 Honorable Mention: EchoGuide: Active Acoustic Guidance for LLM-Based Eating Event Analysis from Egocentric Videos

12:48
 
Compartir
 

Manage episode 444948931 series 3605621
Contenido proporcionado por Kai Kunze. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Kai Kunze o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

We deep dive today into an ISWC 2024 Honorable Mention.

Self-recording eating behaviors is a step towards a healthy lifestyle recommended by many health professionals. However, the current practice of manually recording eating activities using paper records or smartphone apps is often unsustainable and inaccurate. Smart glasses have emerged as a promising wearable form factor for tracking eating behaviors, but existing systems primarily identify when eating occurs without capturing details of the eating activities (E.g., what is being eaten). In this paper, we present EchoGuide, an application and system pipeline that leverages low-power active acoustic sensing to guide head-mounted cameras to capture egocentric videos, enabling efficient and detailed analysis of eating activities. By combining active acoustic sensing for eating detection with video captioning models and large-scale language models for retrieval augmentation, EchoGuide intelligently clips and analyzes videos to create concise, relevant activity records on eating. We evaluated EchoGuide with 9 participants in naturalistic settings involving eating activities, demonstrating high-quality summarization and significant reductions in video data needed, paving the way for practical, scalable eating activity tracking.

https://dl.acm.org/doi/10.1145/3675095.3676611

  continue reading

29 episodios

Artwork
iconCompartir
 
Manage episode 444948931 series 3605621
Contenido proporcionado por Kai Kunze. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Kai Kunze o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

We deep dive today into an ISWC 2024 Honorable Mention.

Self-recording eating behaviors is a step towards a healthy lifestyle recommended by many health professionals. However, the current practice of manually recording eating activities using paper records or smartphone apps is often unsustainable and inaccurate. Smart glasses have emerged as a promising wearable form factor for tracking eating behaviors, but existing systems primarily identify when eating occurs without capturing details of the eating activities (E.g., what is being eaten). In this paper, we present EchoGuide, an application and system pipeline that leverages low-power active acoustic sensing to guide head-mounted cameras to capture egocentric videos, enabling efficient and detailed analysis of eating activities. By combining active acoustic sensing for eating detection with video captioning models and large-scale language models for retrieval augmentation, EchoGuide intelligently clips and analyzes videos to create concise, relevant activity records on eating. We evaluated EchoGuide with 9 participants in naturalistic settings involving eating activities, demonstrating high-quality summarization and significant reductions in video data needed, paving the way for practical, scalable eating activity tracking.

https://dl.acm.org/doi/10.1145/3675095.3676611

  continue reading

29 episodios

همه قسمت ها

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida