Artwork

Contenido proporcionado por Kai Kunze. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Kai Kunze o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

ISMAR 2024: Filtering on the Go: Effect of Filters on Gaze Pointing Accuracy During Physical Locomotion in Extended Reality

20:26
 
Compartir
 

Manage episode 448053227 series 3605621
Contenido proporcionado por Kai Kunze. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Kai Kunze o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Pavel Manakhov, Ludwig Sidenmark, Ken Pfeuffer, and Hans Gellersen. 2024. Filtering on the Go: Effect of Filters on Gaze Pointing Accuracy During Physical Locomotion in Extended Reality. IEEE Transactions on Visualization and Computer Graphics 30, 11 (Nov. 2024), 7234–7244. https://doi.org/10.1109/TVCG.2024.3456153

Eye tracking filters have been shown to improve accuracy of gaze estimation and input for stationary settings. However, their effectiveness during physical movement remains underexplored. In this work, we compare common online filters in the context of physical locomotion in extended reality and propose alterations to improve them for on-the-go settings. We conducted a computational experiment where we simulate performance of the online filters using data on participants attending visual targets located in world-, path-, and two head-based reference frames while standing, walking, and jogging. Our results provide insights into the filters' effectiveness and factors that affect it, such as the amount of noise caused by locomotion and differences in compensatory eye movements, and demonstrate that filters with saccade detection prove most useful for on-the-go settings. We discuss the implications of our findings and conclude with guidance on gaze data filtering for interaction in extended reality.

https://ieeexplore.ieee.org/document/10672561

  continue reading

35 episodios

Artwork
iconCompartir
 
Manage episode 448053227 series 3605621
Contenido proporcionado por Kai Kunze. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Kai Kunze o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Pavel Manakhov, Ludwig Sidenmark, Ken Pfeuffer, and Hans Gellersen. 2024. Filtering on the Go: Effect of Filters on Gaze Pointing Accuracy During Physical Locomotion in Extended Reality. IEEE Transactions on Visualization and Computer Graphics 30, 11 (Nov. 2024), 7234–7244. https://doi.org/10.1109/TVCG.2024.3456153

Eye tracking filters have been shown to improve accuracy of gaze estimation and input for stationary settings. However, their effectiveness during physical movement remains underexplored. In this work, we compare common online filters in the context of physical locomotion in extended reality and propose alterations to improve them for on-the-go settings. We conducted a computational experiment where we simulate performance of the online filters using data on participants attending visual targets located in world-, path-, and two head-based reference frames while standing, walking, and jogging. Our results provide insights into the filters' effectiveness and factors that affect it, such as the amount of noise caused by locomotion and differences in compensatory eye movements, and demonstrate that filters with saccade detection prove most useful for on-the-go settings. We discuss the implications of our findings and conclude with guidance on gaze data filtering for interaction in extended reality.

https://ieeexplore.ieee.org/document/10672561

  continue reading

35 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir