Artwork

Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

A Consensus-Based Algorithm for Non-Convex Multiplayer Games: Abstract and Introduction

5:06
 
Compartir
 

Manage episode 428397117 series 3474369
Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/a-consensus-based-algorithm-for-non-convex-multiplayer-games-abstract-and-introduction.
A novel algorithm using swarm intelligence to find global Nash equilibria in nonconvex multiplayer games, with convergence guarantees and numerical experiments.
Check more stories related to gaming at: https://hackernoon.com/c/gaming. You can also check exclusive content about #games, #numerical-experiments, #consensus-based-optimization, #zeroth-order-algorithm, #nonconvex-multiplayer-games, #global-nash-equilibria, #metaheuristics, #mean-field-convergence, and more.
This story was written by: @oligopoly. Learn more about this writer by checking @oligopoly's about page, and for more stories, please visit hackernoon.com.
In this paper, we present a novel consensus-based zeroth-order algorithm tailored for nonconvex multiplayer games. The proposed method leverages a metaheuristic approach using concepts from swarm intelligence to reliably identify global Nash equilibria. We utilize a group of interacting particles, each agreeing on a specific consensus point, asymptotically converging to the corresponding optimal strategy.

  continue reading

135 episodios

Artwork
iconCompartir
 
Manage episode 428397117 series 3474369
Contenido proporcionado por HackerNoon. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente HackerNoon o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/a-consensus-based-algorithm-for-non-convex-multiplayer-games-abstract-and-introduction.
A novel algorithm using swarm intelligence to find global Nash equilibria in nonconvex multiplayer games, with convergence guarantees and numerical experiments.
Check more stories related to gaming at: https://hackernoon.com/c/gaming. You can also check exclusive content about #games, #numerical-experiments, #consensus-based-optimization, #zeroth-order-algorithm, #nonconvex-multiplayer-games, #global-nash-equilibria, #metaheuristics, #mean-field-convergence, and more.
This story was written by: @oligopoly. Learn more about this writer by checking @oligopoly's about page, and for more stories, please visit hackernoon.com.
In this paper, we present a novel consensus-based zeroth-order algorithm tailored for nonconvex multiplayer games. The proposed method leverages a metaheuristic approach using concepts from swarm intelligence to reliably identify global Nash equilibria. We utilize a group of interacting particles, each agreeing on a specific consensus point, asymptotically converging to the corresponding optimal strategy.

  continue reading

135 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida