Artwork

Contenido proporcionado por Jonathan Stephens. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Jonathan Stephens o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Will NeRFs Replace Photogrammetry?

52:14
 
Compartir
 

Manage episode 346778224 series 3364101
Contenido proporcionado por Jonathan Stephens. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Jonathan Stephens o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

In this episode of Computer Vision Decoded, we are going to dive into one of the hottest topics in the industry: Neural Radiance Fields (NeRFs)

We are joined by Matt Tancik, a student pursuing a PhD in the computer science and electrical engineering department at UC Berkeley. He has also contributed research to the original NeRF project in 2020 along with several others since then.

Last but not least, he is building NeRFStudio - a collaboration friendly studio for NeRFs.

In this episode you will learn about what NeRFs are and more importantly what they are not. Matt goes into the challenges of large scale NeRF creation with his experience with Block-NeRF.

Follow Matt's work at https://www.matthewtancik.com/

Get started with Nerfstudio here: https://docs.nerf.studio/en/latest/

Block-NeRF details: https://waymo.com/research/block-nerf/

00:00 Intro
00:45 Matt’s Background Into NeRF Research
04:00 What is a NeRF and how it is different from photogrammetry
11:57 Can geometry be extracted from NeRFs?
15:30 Will NeRFs supersede photogrammetry in the future?
22:47 Block-NeRF and the pros and cons of using 360 cameras
25:30 What is the goal of Block-NeRF
30:44 Why do NeRFs need large GPUs to compute?
35:45 Meshes to simulate NeRF visualizations
40:28 What is Nerfstudio?
47:40 How to get started with Nerfstudio

Follow Jared Heinly on Twitter: https://twitter.com/JaredHeinly
Follow Jonathan Stephens on Twitter at: https://twitter.com/jonstephens85

This episode is brought to you by EveryPoint. Learn more about how EveryPoint is building an infinitely scalable data collection and processing platform for the next generation of spatial computing applications and services: https://www.everypoint.io

  continue reading

14 episodios

Artwork

Will NeRFs Replace Photogrammetry?

Computer Vision Decoded

0-10 subscribers

published

iconCompartir
 
Manage episode 346778224 series 3364101
Contenido proporcionado por Jonathan Stephens. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Jonathan Stephens o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

In this episode of Computer Vision Decoded, we are going to dive into one of the hottest topics in the industry: Neural Radiance Fields (NeRFs)

We are joined by Matt Tancik, a student pursuing a PhD in the computer science and electrical engineering department at UC Berkeley. He has also contributed research to the original NeRF project in 2020 along with several others since then.

Last but not least, he is building NeRFStudio - a collaboration friendly studio for NeRFs.

In this episode you will learn about what NeRFs are and more importantly what they are not. Matt goes into the challenges of large scale NeRF creation with his experience with Block-NeRF.

Follow Matt's work at https://www.matthewtancik.com/

Get started with Nerfstudio here: https://docs.nerf.studio/en/latest/

Block-NeRF details: https://waymo.com/research/block-nerf/

00:00 Intro
00:45 Matt’s Background Into NeRF Research
04:00 What is a NeRF and how it is different from photogrammetry
11:57 Can geometry be extracted from NeRFs?
15:30 Will NeRFs supersede photogrammetry in the future?
22:47 Block-NeRF and the pros and cons of using 360 cameras
25:30 What is the goal of Block-NeRF
30:44 Why do NeRFs need large GPUs to compute?
35:45 Meshes to simulate NeRF visualizations
40:28 What is Nerfstudio?
47:40 How to get started with Nerfstudio

Follow Jared Heinly on Twitter: https://twitter.com/JaredHeinly
Follow Jonathan Stephens on Twitter at: https://twitter.com/jonstephens85

This episode is brought to you by EveryPoint. Learn more about how EveryPoint is building an infinitely scalable data collection and processing platform for the next generation of spatial computing applications and services: https://www.everypoint.io

  continue reading

14 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir