Artwork

Contenido proporcionado por Changelog Media. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Changelog Media o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Metrics Driven Development (Practical AI #284)

42:14
 
Compartir
 

Manage episode 436938290 series 1280399
Contenido proporcionado por Changelog Media. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Changelog Media o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

How do you systematically measure, optimize, and improve the performance of LLM applications (like those powered by RAG or tool use)? Ragas is an open source effort that has been trying to answer this question comprehensively, and they are promoting a “Metrics Driven Development” approach. Shahul from Ragas joins us to discuss Ragas in this episode, and we dig into specific metrics, the difference between benchmarking models and evaluating LLM apps, generating synthetic test data and more.

Join the discussion

Changelog++ members save 5 minutes on this episode because they made the ads disappear. Join today!

Sponsors:

  • Assembly AI – Turn voice data into summaries with AssemblyAI’s leading Speech AI models. Built by AI experts, their Speech AI models include accurate speech-to-text for voice data (such as calls, virtual meetings, and podcasts), speaker detection, sentiment analysis, chapter detection, PII redaction, and more.

Featuring:

Show Notes:

Something missing or broken? PRs welcome!

  continue reading

Capíttulos

1. Welcome to Practical AI (00:00:00)

2. What is Ragas (00:00:43)

3. General LLM evaluation (00:05:19)

4. Current unit testing workflow (00:10:10)

5. Metrics driven development (00:14:37)

6. Sponsor: Assembly AI (00:17:20)

7. Most used metrics (00:20:59)

8. Data burdens (00:26:27)

9. Exciting things coming (00:35:50)

10. Thanks for joining us! (00:40:49)

11. Outro (00:41:25)

2166 episodios

Artwork
iconCompartir
 
Manage episode 436938290 series 1280399
Contenido proporcionado por Changelog Media. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Changelog Media o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

How do you systematically measure, optimize, and improve the performance of LLM applications (like those powered by RAG or tool use)? Ragas is an open source effort that has been trying to answer this question comprehensively, and they are promoting a “Metrics Driven Development” approach. Shahul from Ragas joins us to discuss Ragas in this episode, and we dig into specific metrics, the difference between benchmarking models and evaluating LLM apps, generating synthetic test data and more.

Join the discussion

Changelog++ members save 5 minutes on this episode because they made the ads disappear. Join today!

Sponsors:

  • Assembly AI – Turn voice data into summaries with AssemblyAI’s leading Speech AI models. Built by AI experts, their Speech AI models include accurate speech-to-text for voice data (such as calls, virtual meetings, and podcasts), speaker detection, sentiment analysis, chapter detection, PII redaction, and more.

Featuring:

Show Notes:

Something missing or broken? PRs welcome!

  continue reading

Capíttulos

1. Welcome to Practical AI (00:00:00)

2. What is Ragas (00:00:43)

3. General LLM evaluation (00:05:19)

4. Current unit testing workflow (00:10:10)

5. Metrics driven development (00:14:37)

6. Sponsor: Assembly AI (00:17:20)

7. Most used metrics (00:20:59)

8. Data burdens (00:26:27)

9. Exciting things coming (00:35:50)

10. Thanks for joining us! (00:40:49)

11. Outro (00:41:25)

2166 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida