Africa-focused technology, digital and innovation ecosystem insight and commentary.
…
continue reading
Contenido proporcionado por Linear Digressions, Ben Jaffe, and Katie Malone. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Linear Digressions, Ben Jaffe, and Katie Malone o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !
¡Desconecta con la aplicación Player FM !
Putting machine learning into a database
MP3•Episodio en casa
Manage episode 257945877 series 2527355
Contenido proporcionado por Linear Digressions, Ben Jaffe, and Katie Malone. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Linear Digressions, Ben Jaffe, and Katie Malone o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Most data scientists bounce back and forth regularly between doing analysis in databases using SQL and building and deploying machine learning pipelines in R or python. But if we think ahead a few years, a few visionary researchers are starting to see a world in which the ML pipelines can actually be deployed inside the database. Why? One strong advantage for databases is they have built-in features for data governance, including things like permissioning access and tracking the provenance of data. Adding machine learning as another thing you can do in a database means that, potentially, these enterprise-grade features will be available for ML models too, which will make them much more widely accepted across enterprises with tight IT policies. The papers this week articulate the gap between enterprise needs and current ML infrastructure, how ML in a database could be a way to knit the two closer together, and a proof-of-concept that ML in a database can actually work. Relevant links: https://blog.acolyer.org/2020/02/19/ten-year-egml-predictions/ https://blog.acolyer.org/2020/02/21/extending-relational-query-processing/
…
continue reading
291 episodios
MP3•Episodio en casa
Manage episode 257945877 series 2527355
Contenido proporcionado por Linear Digressions, Ben Jaffe, and Katie Malone. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Linear Digressions, Ben Jaffe, and Katie Malone o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Most data scientists bounce back and forth regularly between doing analysis in databases using SQL and building and deploying machine learning pipelines in R or python. But if we think ahead a few years, a few visionary researchers are starting to see a world in which the ML pipelines can actually be deployed inside the database. Why? One strong advantage for databases is they have built-in features for data governance, including things like permissioning access and tracking the provenance of data. Adding machine learning as another thing you can do in a database means that, potentially, these enterprise-grade features will be available for ML models too, which will make them much more widely accepted across enterprises with tight IT policies. The papers this week articulate the gap between enterprise needs and current ML infrastructure, how ML in a database could be a way to knit the two closer together, and a proof-of-concept that ML in a database can actually work. Relevant links: https://blog.acolyer.org/2020/02/19/ten-year-egml-predictions/ https://blog.acolyer.org/2020/02/21/extending-relational-query-processing/
…
continue reading
291 episodios
כל הפרקים
×Bienvenido a Player FM!
Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.