Artwork

Contenido proporcionado por Thoughtworks. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Thoughtworks o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Building at the intersection of machine learning and software engineering

48:30
 
Compartir
 

Manage episode 415899533 series 2434934
Contenido proporcionado por Thoughtworks. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Thoughtworks o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Bringing machine learning models into production is challenging. This is why, as demand for machine learning capabilities in products and services increases, new kinds of teams and new ways of working are emerging to bridge the gap between data science and software engineering. Effective Machine Learning Teams — written by Thoughtworkers David Tan, Ada Leung and Dave Colls — was created to help practitioners get to grips with these challenges and master everything needed to deliver exceptional machine learning-backed products.

In this episode of the Technology Podcast, the authors join Scott Shaw and Ken Mugrage to discuss their book. They explain how it addresses current issues in the field, taking in everything from the technical challenges of testing and deployment to the cultural work of building teams that span different disciplines and areas of expertise.

Learn more about Effective Machine Learning Teams: https://www.thoughtworks.com/insights/books/effective-machine-learning-teams

Read a Q&A with the authors: https://www.thoughtworks.com/insights/blog/machine-learning-and-ai/author-q-and-a-effective-machine-learning-teams

  continue reading

205 episodios

Artwork
iconCompartir
 
Manage episode 415899533 series 2434934
Contenido proporcionado por Thoughtworks. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Thoughtworks o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Bringing machine learning models into production is challenging. This is why, as demand for machine learning capabilities in products and services increases, new kinds of teams and new ways of working are emerging to bridge the gap between data science and software engineering. Effective Machine Learning Teams — written by Thoughtworkers David Tan, Ada Leung and Dave Colls — was created to help practitioners get to grips with these challenges and master everything needed to deliver exceptional machine learning-backed products.

In this episode of the Technology Podcast, the authors join Scott Shaw and Ken Mugrage to discuss their book. They explain how it addresses current issues in the field, taking in everything from the technical challenges of testing and deployment to the cultural work of building teams that span different disciplines and areas of expertise.

Learn more about Effective Machine Learning Teams: https://www.thoughtworks.com/insights/books/effective-machine-learning-teams

Read a Q&A with the authors: https://www.thoughtworks.com/insights/blog/machine-learning-and-ai/author-q-and-a-effective-machine-learning-teams

  continue reading

205 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir