Artwork

Contenido proporcionado por TWIML and Sam Charrington. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente TWIML and Sam Charrington o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Scaling Up Test-Time Compute with Latent Reasoning with Jonas Geiping - #723

58:38
 
Compartir
 

Manage episode 471860280 series 2355587
Contenido proporcionado por TWIML and Sam Charrington. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente TWIML and Sam Charrington o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Today, we're joined by Jonas Geiping, research group leader at Ellis Institute and the Max Planck Institute for Intelligent Systems to discuss his recent paper, “Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach.” This paper proposes a novel language model architecture which uses recurrent depth to enable “thinking in latent space.” We dig into “internal reasoning” versus “verbalized reasoning”—analogous to non-verbalized and verbalized thinking in humans, and discuss how the model searches in latent space to predict the next token and dynamically allocates more compute based on token difficulty. We also explore how the recurrent depth architecture simplifies LLMs, the parallels to diffusion models, the model's performance on reasoning tasks, the challenges of comparing models with varying compute budgets, and architectural advantages such as zero-shot adaptive exits and natural speculative decoding.

The complete show notes for this episode can be found at https://twimlai.com/go/723.

  continue reading

745 episodios

Artwork
iconCompartir
 
Manage episode 471860280 series 2355587
Contenido proporcionado por TWIML and Sam Charrington. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente TWIML and Sam Charrington o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Today, we're joined by Jonas Geiping, research group leader at Ellis Institute and the Max Planck Institute for Intelligent Systems to discuss his recent paper, “Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach.” This paper proposes a novel language model architecture which uses recurrent depth to enable “thinking in latent space.” We dig into “internal reasoning” versus “verbalized reasoning”—analogous to non-verbalized and verbalized thinking in humans, and discuss how the model searches in latent space to predict the next token and dynamically allocates more compute based on token difficulty. We also explore how the recurrent depth architecture simplifies LLMs, the parallels to diffusion models, the model's performance on reasoning tasks, the challenges of comparing models with varying compute budgets, and architectural advantages such as zero-shot adaptive exits and natural speculative decoding.

The complete show notes for this episode can be found at https://twimlai.com/go/723.

  continue reading

745 episodios

همه قسمت ها

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir