Dr. Maham Aftab on Modal Integration
MP3•Episodio en casa
Manage episode 247979299 series 2572690
Contenido proporcionado por The Spotlight Report. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Spotlight Report o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
In this weeks episode we sit down with Maham Aftab, who has an extensive background in the sciences as well as activism for a variety of causes. We discuss her most recent publication, in which she used Chebyshev gradient polynomials as a basis set for modal integration. She discusses the recursive nature of the polynomial set which allowed for her method to generate a high number of fitting polynomials. The integration’s ortho-normality is discussed, as well as its unique benefits and how it fits into the general universe of integration methods for slope data. Additionally, Maham speaks about her academic experience and her work in activism. Resources: Aftab’s Paper: Maham Aftab, James H. Burge, Greg A. Smith, Logan Graves, Chang-jin Oh, and Dae Wook Kim, “Modal Data Processing for High Resolution Deflectometry,” Int. J. of Precis. Eng. and Manuf.-Green Tech. (2018). (in press) Southwell Integration Paper: https://www.osapublishing.org/josa/abstract.cfm?uri=josa-70-8-998 --- Support this podcast: https://podcasters.spotify.com/pod/show/the-spotlight-report/support
…
continue reading
49 episodios