Artwork

Contenido proporcionado por Real Python. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Real Python o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Leveraging Documents and Data to Create a Custom LLM Chatbot

1:08:12
 
Compartir
 

Manage episode 410800254 series 2637014
Contenido proporcionado por Real Python. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Real Python o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

How do you customize a LLM chatbot to address a collection of documents and data? What tools and techniques can you use to build embeddings into a vector database? This week on the show, Calvin Hendryx-Parker is back to discuss developing an AI-powered, Large Language Model-driven chat interface.

Calvin is the co-founder and CTO of Six Feet Up, a Python and AI consultancy. He shares a recent project for a family-owned seed company that wanted to build a tool for customers to access years of farm research. These documents were stored as brochure-style PDFs and spanned 50 years.

We discuss several of the tools used to augment a LLM. Calvin covers working with LangChain and vectorizing data with ChromaDB. We talk about the obstacles and limitations of capturing documentation.

Calvin also shares a smaller project that you can try out yourself. It takes the information from a conference website and creates a chatbot using Django and Python prompt-toolkit.

This episode is sponsored by Mailtrap.

Course Spotlight: Command Line Interfaces in Python

Command line arguments are the key to converting your programs into useful and enticing tools that are ready to be used in the terminal of your operating system. In this course, you’ll learn their origins, standards, and basics, and how to implement them in your program.

Topics:

  • 00:00:00 – Introduction
  • 00:02:21 – Background on the project
  • 00:03:51 – Complexity of adding documents
  • 00:09:01 – Retrieval-augmented generation and providing links
  • 00:13:46 – Updating information and larger conversation context
  • 00:18:08 – Sponsor: Mailtrap
  • 00:18:43 – Working with context
  • 00:21:02 – Temperature adjustment
  • 00:22:07 – Rally Conference Chatbot Project
  • 00:26:20 – Vectorization using ChromaDB
  • 00:32:49 – Employing Python prompt-toolkit
  • 00:35:07 – Learning libraries on the fly
  • 00:37:38 – Video Course Spotlight
  • 00:39:00 – Problems with tables in documents
  • 00:42:30 – Everything looks like a chat box
  • 00:44:26 – Finding the right fit for a client and customer
  • 00:49:05 – What are questions you ask a new client now?
  • 00:51:54 – Canada Air anecdote
  • 00:56:20 – How do you stay up to date on these topics?
  • 01:01:03 – What are you excited about in the world of Python?
  • 01:03:22 – What do you want to learn next?
  • 01:04:58 – How can people follow your work online?
  • 01:05:31 – IndyPy
  • 01:07:13 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

233 episodios

Artwork
iconCompartir
 
Manage episode 410800254 series 2637014
Contenido proporcionado por Real Python. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Real Python o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

How do you customize a LLM chatbot to address a collection of documents and data? What tools and techniques can you use to build embeddings into a vector database? This week on the show, Calvin Hendryx-Parker is back to discuss developing an AI-powered, Large Language Model-driven chat interface.

Calvin is the co-founder and CTO of Six Feet Up, a Python and AI consultancy. He shares a recent project for a family-owned seed company that wanted to build a tool for customers to access years of farm research. These documents were stored as brochure-style PDFs and spanned 50 years.

We discuss several of the tools used to augment a LLM. Calvin covers working with LangChain and vectorizing data with ChromaDB. We talk about the obstacles and limitations of capturing documentation.

Calvin also shares a smaller project that you can try out yourself. It takes the information from a conference website and creates a chatbot using Django and Python prompt-toolkit.

This episode is sponsored by Mailtrap.

Course Spotlight: Command Line Interfaces in Python

Command line arguments are the key to converting your programs into useful and enticing tools that are ready to be used in the terminal of your operating system. In this course, you’ll learn their origins, standards, and basics, and how to implement them in your program.

Topics:

  • 00:00:00 – Introduction
  • 00:02:21 – Background on the project
  • 00:03:51 – Complexity of adding documents
  • 00:09:01 – Retrieval-augmented generation and providing links
  • 00:13:46 – Updating information and larger conversation context
  • 00:18:08 – Sponsor: Mailtrap
  • 00:18:43 – Working with context
  • 00:21:02 – Temperature adjustment
  • 00:22:07 – Rally Conference Chatbot Project
  • 00:26:20 – Vectorization using ChromaDB
  • 00:32:49 – Employing Python prompt-toolkit
  • 00:35:07 – Learning libraries on the fly
  • 00:37:38 – Video Course Spotlight
  • 00:39:00 – Problems with tables in documents
  • 00:42:30 – Everything looks like a chat box
  • 00:44:26 – Finding the right fit for a client and customer
  • 00:49:05 – What are questions you ask a new client now?
  • 00:51:54 – Canada Air anecdote
  • 00:56:20 – How do you stay up to date on these topics?
  • 01:01:03 – What are you excited about in the world of Python?
  • 01:03:22 – What do you want to learn next?
  • 01:04:58 – How can people follow your work online?
  • 01:05:31 – IndyPy
  • 01:07:13 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

233 episodios

Усі епізоди

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir