Artwork

Contenido proporcionado por The New Stack Podcast and The New Stack. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The New Stack Podcast and The New Stack o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Is Apache Spark Too Costly? An Amazon Engineer Tells His Story

25:26
 
Compartir
 

Manage episode 451267089 series 2574278
Contenido proporcionado por The New Stack Podcast and The New Stack. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The New Stack Podcast and The New Stack o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Is Apache Spark too costly? Amazon Principal Engineer Patrick Ames tackled this question during an interview with The New Stack Makers, sharing insights into transitioning from Spark to Ray for managing large-scale data. Ames, described as a "go-to" engineer for exabyte-scale projects, emphasized a goal-driven approach to solving complex engineering problems, from simplifying daily chores to optimizing software solutions.

Initially, Spark was chosen at Amazon for its simplicity and open-source flexibility, allowing efficient merging of data with minimal SQL code. The team leveraged Spark in a decoupled architecture over S3 storage, scaling it to handle thousands of jobs daily. However, as data volumes grew to hundreds of terabytes and beyond, Spark’s limitations became apparent. Long processing times and high costs prompted a search for alternatives.

Enter Ray—a unified framework designed for scaling AI and Python applications. After experimentation, Ames and his team noted significant efficiency improvements, driving the shift from Spark to Ray to meet scalability and cost-efficiency needs.

Learn more from The New Stack about Apache Spark and Ray:

Amazon to Save Millions Moving From Apache Spark to Ray

How Ray, a Distributed AI Framework, Helps Power ChatGPT

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.

  continue reading

301 episodios

Artwork
iconCompartir
 
Manage episode 451267089 series 2574278
Contenido proporcionado por The New Stack Podcast and The New Stack. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The New Stack Podcast and The New Stack o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Is Apache Spark too costly? Amazon Principal Engineer Patrick Ames tackled this question during an interview with The New Stack Makers, sharing insights into transitioning from Spark to Ray for managing large-scale data. Ames, described as a "go-to" engineer for exabyte-scale projects, emphasized a goal-driven approach to solving complex engineering problems, from simplifying daily chores to optimizing software solutions.

Initially, Spark was chosen at Amazon for its simplicity and open-source flexibility, allowing efficient merging of data with minimal SQL code. The team leveraged Spark in a decoupled architecture over S3 storage, scaling it to handle thousands of jobs daily. However, as data volumes grew to hundreds of terabytes and beyond, Spark’s limitations became apparent. Long processing times and high costs prompted a search for alternatives.

Enter Ray—a unified framework designed for scaling AI and Python applications. After experimentation, Ames and his team noted significant efficiency improvements, driving the shift from Spark to Ray to meet scalability and cost-efficiency needs.

Learn more from The New Stack about Apache Spark and Ray:

Amazon to Save Millions Moving From Apache Spark to Ray

How Ray, a Distributed AI Framework, Helps Power ChatGPT

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.

  continue reading

301 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir