Artwork

Contenido proporcionado por The New Stack Podcast and The New Stack. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The New Stack Podcast and The New Stack o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

How Can We Solve Observability's Data Capture and Spending Problem?

22:21
 
Compartir
 

Manage episode 520351842 series 2574278
Contenido proporcionado por The New Stack Podcast and The New Stack. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The New Stack Podcast and The New Stack o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

DevOps practitioners — whether developers, operators, SREs or business stakeholders — increasingly rely on telemetry to guide decisions, yet face growing complexity, siloed teams and rising observability costs. In a conversation at KubeCon + CloudNativeCon North America, IBM’s Jacob Yackenovich emphasized the importance of collecting high-granularity, full-capture data to avoid missing critical performance signals across hybrid application stacks that blend legacy and cloud-native components. He argued that observability must evolve to serve both technical and nontechnical users, enabling teams to focus on issues based on real business impact rather than subjective judgment.

AI’s rapid integration into applications introduces new observability challenges. Yackenovich described two patterns: add-on AI services, such as chatbots, whose failures don’t disrupt core workflows, and blocking-style AI components embedded in essential processes like fraud detection, where errors directly affect application function.

Rising cloud and ingestion costs further complicate telemetry strategies. Yackenovich cautioned against limiting visibility for budget reasons, advocating instead for predictable, fixed-price observability models that let organizations innovate without financial uncertainty.

Learn more from The New Stack about the latest in observability:

Introduction to Observability

Observability 2.0? Or Just Logs All Over Again?

Building an Observability Culture: Getting Everyone Onboard

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.


Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

  continue reading

306 episodios

Artwork
iconCompartir
 
Manage episode 520351842 series 2574278
Contenido proporcionado por The New Stack Podcast and The New Stack. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The New Stack Podcast and The New Stack o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

DevOps practitioners — whether developers, operators, SREs or business stakeholders — increasingly rely on telemetry to guide decisions, yet face growing complexity, siloed teams and rising observability costs. In a conversation at KubeCon + CloudNativeCon North America, IBM’s Jacob Yackenovich emphasized the importance of collecting high-granularity, full-capture data to avoid missing critical performance signals across hybrid application stacks that blend legacy and cloud-native components. He argued that observability must evolve to serve both technical and nontechnical users, enabling teams to focus on issues based on real business impact rather than subjective judgment.

AI’s rapid integration into applications introduces new observability challenges. Yackenovich described two patterns: add-on AI services, such as chatbots, whose failures don’t disrupt core workflows, and blocking-style AI components embedded in essential processes like fraud detection, where errors directly affect application function.

Rising cloud and ingestion costs further complicate telemetry strategies. Yackenovich cautioned against limiting visibility for budget reasons, advocating instead for predictable, fixed-price observability models that let organizations innovate without financial uncertainty.

Learn more from The New Stack about the latest in observability:

Introduction to Observability

Observability 2.0? Or Just Logs All Over Again?

Building an Observability Culture: Getting Everyone Onboard

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.


Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

  continue reading

306 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir