Artwork

Contenido proporcionado por scott cunningham and Scott cunningham. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente scott cunningham and Scott cunningham o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

S4E8: Jann Spiess, Machine Learning and Causal Inference, Stanford

1:57:27
 
Compartir
 

Manage episode 453457161 series 3343922
Contenido proporcionado por scott cunningham and Scott cunningham. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente scott cunningham and Scott cunningham o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Welcome to the latest episode of The Mixtape with Scott! This week’s guest on the podcast is Jann Spiess. Many of you probably know Jann from his work with Kirill Borusyak and Xavier Jaravel on diff-in-diff. Others may know him for his work on machine learning. Now you get to know him for a third reason which is contained on this podcast!

Jann is an assistant professor at Stanford. He’s one of a younger cohort of talented econometricians who have been making practically helpful contributions to the toolkit in causal inference and machine learning, including work on synthetic control with Guido Imbens and much more. This was a great interview and I learned a lot about Jann I didn’t know about. And I hope you enjoy it it too!

Thanks again for all your support! Share this video or podcast with whoever you think would like it!

Scott's Mixtape Substack is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber.

Get full access to Scott's Mixtape Substack at causalinf.substack.com/subscribe

  continue reading

124 episodios

Artwork
iconCompartir
 
Manage episode 453457161 series 3343922
Contenido proporcionado por scott cunningham and Scott cunningham. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente scott cunningham and Scott cunningham o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Welcome to the latest episode of The Mixtape with Scott! This week’s guest on the podcast is Jann Spiess. Many of you probably know Jann from his work with Kirill Borusyak and Xavier Jaravel on diff-in-diff. Others may know him for his work on machine learning. Now you get to know him for a third reason which is contained on this podcast!

Jann is an assistant professor at Stanford. He’s one of a younger cohort of talented econometricians who have been making practically helpful contributions to the toolkit in causal inference and machine learning, including work on synthetic control with Guido Imbens and much more. This was a great interview and I learned a lot about Jann I didn’t know about. And I hope you enjoy it it too!

Thanks again for all your support! Share this video or podcast with whoever you think would like it!

Scott's Mixtape Substack is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber.

Get full access to Scott's Mixtape Substack at causalinf.substack.com/subscribe

  continue reading

124 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir