Artwork

Contenido proporcionado por Daniel Bashir. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Daniel Bashir o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Vivek Natarajan: Towards Biomedical AI

1:55:03
 
Compartir
 

Manage episode 422246962 series 2975159
Contenido proporcionado por Daniel Bashir. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Daniel Bashir o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Episode 126

I spoke with Vivek Natarajan about:

* Improving access to medical knowledge with AI

* How an LLM for medicine should behave

* Aspects of training Med-PaLM and AMIE

* How to facilitate appropriate amounts of trust in users of medical AI systems

Vivek Natarajan is a Research Scientist at Google Health AI advancing biomedical AI to help scale world class healthcare to everyone. Vivek is particularly interested in building large language models and multimodal foundation models for biomedical applications and leads the Google Brain moonshot behind Med-PaLM, Google's flagship medical large language model. Med-PaLM has been featured in The Scientific American, The Economist, STAT News, CNBC, Forbes, New Scientist among others.

I spend a lot of time on this podcast—if you like my work, you can support me on Patreon :)

Reach me at editor@thegradient.pub for feedback, ideas, guest suggestions.

Subscribe to The Gradient Podcast: Apple Podcasts | Spotify | Pocket Casts | RSSFollow The Gradient on Twitter

Outline:

* (00:00) Intro

* (00:35) The concept of an “AI doctor”

* (06:54) Accessibility to medical expertise

* (10:31) Enabling doctors to do better/different work

* (14:35) Med-PaLM

* (15:30) Instruction tuning, desirable traits in LLMs for medicine

* (23:41) Axes for evaluation of medical QA systems

* (30:03) Medical LLMs and scientific consensus

* (35:32) Demographic data and patient interventions

* (40:14) Data contamination in Med-PaLM

* (42:45) Grounded claims about capabilities

* (45:48) Building trust

* (50:54) Genetic Discovery enabled by a LLM

* (51:33) Novel hypotheses in genetic discovery

* (57:10) Levels of abstraction for hypotheses

* (1:01:10) Directions for continued progress

* (1:03:05) Conversational Diagnostic AI

* (1:03:30) Objective Structures Clinical Examination as an evaluative framework

* (1:09:08) Relative importance of different types of data

* (1:13:52) Self-play — conversational dispositions and handling patients

* (1:16:41) Chain of reasoning and information retention

* (1:20:00) Performance in different areas of medical expertise

* (1:22:35) Towards accurate differential diagnosis

* (1:31:40) Feedback mechanisms and expertise, disagreement among clinicians

* (1:35:26) Studying trust, user interfaces

* (1:38:08) Self-trust in using medical AI models

* (1:41:39) UI for medical AI systems

* (1:43:50) Model reasoning in complex scenarios

* (1:46:33) Prompting

* (1:48:41) Future outlooks

* (1:54:53) Outro

Links:

* Vivek’s Twitter and homepage

* Papers

* Towards Expert-Level Medical Question Answering with LLMs (2023)

* LLMs encode clinical knowledge (2023)

* Towards Generalist Biomedical AI (2024)

* AMIE

* Genetic Discovery enabled by a LLM (2023)


Get full access to The Gradient at thegradientpub.substack.com/subscribe
  continue reading

150 episodios

Artwork
iconCompartir
 
Manage episode 422246962 series 2975159
Contenido proporcionado por Daniel Bashir. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Daniel Bashir o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Episode 126

I spoke with Vivek Natarajan about:

* Improving access to medical knowledge with AI

* How an LLM for medicine should behave

* Aspects of training Med-PaLM and AMIE

* How to facilitate appropriate amounts of trust in users of medical AI systems

Vivek Natarajan is a Research Scientist at Google Health AI advancing biomedical AI to help scale world class healthcare to everyone. Vivek is particularly interested in building large language models and multimodal foundation models for biomedical applications and leads the Google Brain moonshot behind Med-PaLM, Google's flagship medical large language model. Med-PaLM has been featured in The Scientific American, The Economist, STAT News, CNBC, Forbes, New Scientist among others.

I spend a lot of time on this podcast—if you like my work, you can support me on Patreon :)

Reach me at editor@thegradient.pub for feedback, ideas, guest suggestions.

Subscribe to The Gradient Podcast: Apple Podcasts | Spotify | Pocket Casts | RSSFollow The Gradient on Twitter

Outline:

* (00:00) Intro

* (00:35) The concept of an “AI doctor”

* (06:54) Accessibility to medical expertise

* (10:31) Enabling doctors to do better/different work

* (14:35) Med-PaLM

* (15:30) Instruction tuning, desirable traits in LLMs for medicine

* (23:41) Axes for evaluation of medical QA systems

* (30:03) Medical LLMs and scientific consensus

* (35:32) Demographic data and patient interventions

* (40:14) Data contamination in Med-PaLM

* (42:45) Grounded claims about capabilities

* (45:48) Building trust

* (50:54) Genetic Discovery enabled by a LLM

* (51:33) Novel hypotheses in genetic discovery

* (57:10) Levels of abstraction for hypotheses

* (1:01:10) Directions for continued progress

* (1:03:05) Conversational Diagnostic AI

* (1:03:30) Objective Structures Clinical Examination as an evaluative framework

* (1:09:08) Relative importance of different types of data

* (1:13:52) Self-play — conversational dispositions and handling patients

* (1:16:41) Chain of reasoning and information retention

* (1:20:00) Performance in different areas of medical expertise

* (1:22:35) Towards accurate differential diagnosis

* (1:31:40) Feedback mechanisms and expertise, disagreement among clinicians

* (1:35:26) Studying trust, user interfaces

* (1:38:08) Self-trust in using medical AI models

* (1:41:39) UI for medical AI systems

* (1:43:50) Model reasoning in complex scenarios

* (1:46:33) Prompting

* (1:48:41) Future outlooks

* (1:54:53) Outro

Links:

* Vivek’s Twitter and homepage

* Papers

* Towards Expert-Level Medical Question Answering with LLMs (2023)

* LLMs encode clinical knowledge (2023)

* Towards Generalist Biomedical AI (2024)

* AMIE

* Genetic Discovery enabled by a LLM (2023)


Get full access to The Gradient at thegradientpub.substack.com/subscribe
  continue reading

150 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir