Artwork

Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Overcoming Airflow Scaling Challenges at Monzo Bank with Jonathan Rainer

43:39
 
Compartir
 

Manage episode 465365556 series 2948506
Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Scaling a data orchestration platform to manage thousands of tasks daily demands innovative solutions and strategic problem-solving. In this episode, we explore the complexities of scaling Airflow and the challenges of orchestrating thousands of tasks in dynamic data environments. Jonathan Rainer, Former Platform Engineer at Monzo Bank, joins us to share his journey optimizing data pipelines, overcoming UI limitations and ensuring DAG consistency in high-stakes scenarios.

Key Takeaways:

(03:11) Using Airflow to schedule computation in BigQuery.

(07:02) How DAGs with 8,000+ tasks were managed nightly.

(08:18) Ensuring accuracy in regulatory reporting for banking.

(11:35) Handling task inconsistency and DAG failures with automation.

(16:09) Building a service to resolve DAG consistency issues in Airflow.

(25:05) Challenges with scaling the Airflow UI for thousands of tasks.

(27:03) The role of upstream and downstream task management in Airflow.

(37:33) The importance of operational metrics for monitoring Airflow health.

(39:19) Balancing new tools with root cause analysis to address scaling issues.

(41:35) Why scaling solutions require both technical and leadership buy-in

Resources Mentioned:

Jonathan Rainer -

https://www.linkedin.com/in/jonathan-rainer/

Monzo Bank -

https://www.linkedin.com/company/monzo-bank/

Apache Airflow -

https://airflow.apache.org/

BigQuery -

https://airflow.apache.org/docs/apache-airflow-providers-google/stable/operators/cloud/bigquery.html

Kubernetes -

https://kubernetes.io/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episodios

Artwork
iconCompartir
 
Manage episode 465365556 series 2948506
Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Scaling a data orchestration platform to manage thousands of tasks daily demands innovative solutions and strategic problem-solving. In this episode, we explore the complexities of scaling Airflow and the challenges of orchestrating thousands of tasks in dynamic data environments. Jonathan Rainer, Former Platform Engineer at Monzo Bank, joins us to share his journey optimizing data pipelines, overcoming UI limitations and ensuring DAG consistency in high-stakes scenarios.

Key Takeaways:

(03:11) Using Airflow to schedule computation in BigQuery.

(07:02) How DAGs with 8,000+ tasks were managed nightly.

(08:18) Ensuring accuracy in regulatory reporting for banking.

(11:35) Handling task inconsistency and DAG failures with automation.

(16:09) Building a service to resolve DAG consistency issues in Airflow.

(25:05) Challenges with scaling the Airflow UI for thousands of tasks.

(27:03) The role of upstream and downstream task management in Airflow.

(37:33) The importance of operational metrics for monitoring Airflow health.

(39:19) Balancing new tools with root cause analysis to address scaling issues.

(41:35) Why scaling solutions require both technical and leadership buy-in

Resources Mentioned:

Jonathan Rainer -

https://www.linkedin.com/in/jonathan-rainer/

Monzo Bank -

https://www.linkedin.com/company/monzo-bank/

Apache Airflow -

https://airflow.apache.org/

BigQuery -

https://airflow.apache.org/docs/apache-airflow-providers-google/stable/operators/cloud/bigquery.html

Kubernetes -

https://kubernetes.io/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episodios

Tüm bölümler

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir