Artwork

Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Harnessing Airflow for Data-Driven Policy Research at CSET with Jennifer Melot

17:54
 
Compartir
 

Manage episode 468755901 series 2948506
Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Turning complex datasets into meaningful analysis requires robust data infrastructure and seamless orchestration. In this episode, we’re joined by Jennifer Melot, Technical Lead at the Center for Security and Emerging Technology (CSET) at Georgetown University, to explore how Airflow powers data-driven insights in technology policy research. Jennifer shares how her team automates workflows to support analysts in navigating complex datasets.

Key Takeaways:

(02:04) CSET provides data-driven analysis to inform government decision-makers.

(03:54) ETL pipelines merge multiple data sources for more comprehensive insights.

(04:20) Airflow is central to automating and streamlining large-scale data ingestion.

(05:11) Larger-scale databases create challenges that require scalable solutions.

(07:20) Dynamic DAG generation simplifies Airflow adoption for non-engineers.

(12:13) DAG Factory and dynamic task mapping can improve workflow efficiency.

(15:46) Tracking data lineage helps teams understand dependencies across DAGs.

(16:14) New Airflow features enhance visibility and debugging for complex pipelines.

Resources Mentioned:

Jennifer Melot -

https://www.linkedin.com/in/jennifer-melot-aa710144/

Center for Security and Emerging Technology (CSET) -

https://www.linkedin.com/company/georgetown-cset/

Apache Airflow -

https://airflow.apache.org/

Zenodo -

https://zenodo.org/

OpenLineage -

https://openlineage.io/

Cloud Dataplex -

https://cloud.google.com/dataplex

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episodios

Artwork
iconCompartir
 
Manage episode 468755901 series 2948506
Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Turning complex datasets into meaningful analysis requires robust data infrastructure and seamless orchestration. In this episode, we’re joined by Jennifer Melot, Technical Lead at the Center for Security and Emerging Technology (CSET) at Georgetown University, to explore how Airflow powers data-driven insights in technology policy research. Jennifer shares how her team automates workflows to support analysts in navigating complex datasets.

Key Takeaways:

(02:04) CSET provides data-driven analysis to inform government decision-makers.

(03:54) ETL pipelines merge multiple data sources for more comprehensive insights.

(04:20) Airflow is central to automating and streamlining large-scale data ingestion.

(05:11) Larger-scale databases create challenges that require scalable solutions.

(07:20) Dynamic DAG generation simplifies Airflow adoption for non-engineers.

(12:13) DAG Factory and dynamic task mapping can improve workflow efficiency.

(15:46) Tracking data lineage helps teams understand dependencies across DAGs.

(16:14) New Airflow features enhance visibility and debugging for complex pipelines.

Resources Mentioned:

Jennifer Melot -

https://www.linkedin.com/in/jennifer-melot-aa710144/

Center for Security and Emerging Technology (CSET) -

https://www.linkedin.com/company/georgetown-cset/

Apache Airflow -

https://airflow.apache.org/

Zenodo -

https://zenodo.org/

OpenLineage -

https://openlineage.io/

Cloud Dataplex -

https://cloud.google.com/dataplex

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir