Artwork

Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

The Intersection of AI and Data Management at Dosu with Devin Stein

20:18
 
Compartir
 

Manage episode 443500435 series 2053958
Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Unlocking engineering productivity goes beyond coding — it’s about managing knowledge efficiently. In this episode, we explore the innovative ways in which Dosu leverages Airflow for data orchestration and supports the Airflow project.

Devin Stein, Founder of Dosu, shares his insights on how engineering teams can focus on value-added work by automating knowledge management. Devin dives into Dosu’s purpose, the significance of AI in their product, and why they chose Airflow as the backbone for scheduling and data management.

Key Takeaways:

(01:33) Dosu's mission to democratize engineering knowledge.

(05:00) AI is central to Dosu's product for structuring engineering knowledge.

(06:23) The importance of maintaining up-to-date data for AI effectiveness.

(07:55) How Airflow supports Dosu’s data ingestion and automation processes.

(08:45) The reasoning behind choosing Airflow over other orchestrators.

(11:00) Airflow enables Dosu to manage both traditional ETL and dynamic workflows.

(13:04) Dosu assists the Airflow project by auto-labeling issues and discussions.

(14:56) Thoughtful collaboration with the Airflow community to introduce AI tools.

(16:37) The potential of Airflow to handle more dynamic, scheduled workflows in the future.

(18:00) Challenges and custom solutions for implementing dynamic workflows in Airflow.

Resources Mentioned:

Apache Airflow - https://airflow.apache.org/

Dosu Website - https://dosu.dev/

Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

40 episodios

Artwork
iconCompartir
 
Manage episode 443500435 series 2053958
Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Unlocking engineering productivity goes beyond coding — it’s about managing knowledge efficiently. In this episode, we explore the innovative ways in which Dosu leverages Airflow for data orchestration and supports the Airflow project.

Devin Stein, Founder of Dosu, shares his insights on how engineering teams can focus on value-added work by automating knowledge management. Devin dives into Dosu’s purpose, the significance of AI in their product, and why they chose Airflow as the backbone for scheduling and data management.

Key Takeaways:

(01:33) Dosu's mission to democratize engineering knowledge.

(05:00) AI is central to Dosu's product for structuring engineering knowledge.

(06:23) The importance of maintaining up-to-date data for AI effectiveness.

(07:55) How Airflow supports Dosu’s data ingestion and automation processes.

(08:45) The reasoning behind choosing Airflow over other orchestrators.

(11:00) Airflow enables Dosu to manage both traditional ETL and dynamic workflows.

(13:04) Dosu assists the Airflow project by auto-labeling issues and discussions.

(14:56) Thoughtful collaboration with the Airflow community to introduce AI tools.

(16:37) The potential of Airflow to handle more dynamic, scheduled workflows in the future.

(18:00) Challenges and custom solutions for implementing dynamic workflows in Airflow.

Resources Mentioned:

Apache Airflow - https://airflow.apache.org/

Dosu Website - https://dosu.dev/

Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

40 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir