Artwork

Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Optimizing Large-Scale Deployments at LinkedIn with Rahul Gade

27:47
 
Compartir
 

Manage episode 453327749 series 2053958
Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Scaling deployments for a billion users demands innovation, precision and resilience. In this episode, we dive into how LinkedIn optimizes its continuous deployment process using Apache Airflow. Rahul Gade, Staff Software Engineer at LinkedIn, shares his insights on building scalable systems and democratizing deployments for over 10,000 engineers.

Rahul discusses the challenges of managing large-scale deployments across 6,000 services and how his team leverages Airflow to enhance efficiency, reliability and user accessibility.

Key Takeaways:

(01:36) LinkedIn minimizes human involvement in production to reduce errors.

(02:00) Airflow powers LinkedIn’s Continuous Deployment platform.

(05:43) Continuous deployment adoption grew from 8% to a targeted 80%.

(11:25) Kubernetes ensures scalability and flexibility for deployments.

(12:04) A custom UI offers real-time deployment transparency.

(16:23) No-code YAML workflows simplify deployment tasks.

(17:18) Canaries and metrics ensure safe deployments across fabrics.

(20:45) A gateway service ensures redundancy across Airflow clusters.

(24:22) Abstractions let engineers focus on development, not logistics.

(25:20) Multi-language support in Airflow 3.0 simplifies adoption.

Resources Mentioned:

Rahul Gade -

https://www.linkedin.com/in/rahul-gade-68666818/

LinkedIn -

https://www.linkedin.com/company/linkedin/

Apache Airflow -

https://airflow.apache.org/

Kubernetes -

https://kubernetes.io/

Open Policy Agent (OPA) -

https://www.openpolicyagent.org/

Backstage -

https://backstage.io/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

51 episodios

Artwork
iconCompartir
 
Manage episode 453327749 series 2053958
Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Scaling deployments for a billion users demands innovation, precision and resilience. In this episode, we dive into how LinkedIn optimizes its continuous deployment process using Apache Airflow. Rahul Gade, Staff Software Engineer at LinkedIn, shares his insights on building scalable systems and democratizing deployments for over 10,000 engineers.

Rahul discusses the challenges of managing large-scale deployments across 6,000 services and how his team leverages Airflow to enhance efficiency, reliability and user accessibility.

Key Takeaways:

(01:36) LinkedIn minimizes human involvement in production to reduce errors.

(02:00) Airflow powers LinkedIn’s Continuous Deployment platform.

(05:43) Continuous deployment adoption grew from 8% to a targeted 80%.

(11:25) Kubernetes ensures scalability and flexibility for deployments.

(12:04) A custom UI offers real-time deployment transparency.

(16:23) No-code YAML workflows simplify deployment tasks.

(17:18) Canaries and metrics ensure safe deployments across fabrics.

(20:45) A gateway service ensures redundancy across Airflow clusters.

(24:22) Abstractions let engineers focus on development, not logistics.

(25:20) Multi-language support in Airflow 3.0 simplifies adoption.

Resources Mentioned:

Rahul Gade -

https://www.linkedin.com/in/rahul-gade-68666818/

LinkedIn -

https://www.linkedin.com/company/linkedin/

Apache Airflow -

https://airflow.apache.org/

Kubernetes -

https://kubernetes.io/

Open Policy Agent (OPA) -

https://www.openpolicyagent.org/

Backstage -

https://backstage.io/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

51 episodios

Semua episod

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir