Artwork

Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Inside Ford’s Data Transformation: Advanced Orchestration Strategies with Vasantha Kosuri-Marshall

38:54
 
Compartir
 

Manage episode 461366533 series 2053958
Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Data engineering is entering a new era, where orchestration and automation are redefining how large-scale projects operate. This episode features Vasantha Kosuri-Marshall, Data and ML Ops Engineer at Ford Motor Company. Vasantha shares her expertise in managing complex data pipelines. She takes us through Ford's transition to cloud platforms, the adoption of Airflow and the intricate challenges of orchestrating data in a diverse environment.

Key Takeaways:

(03:10) Vasantha’s transition to the Advanced Driving Assist Systems team at Ford.

(05:42) Early adoption of Airflow to orchestrate complex data pipelines.

(09:29) Ford's move from on-premise data solutions to Google Cloud Platform.

(12:03) The importance of Airflow's scheduling capabilities for efficient data management.

(16:12) Using Kubernetes to scale Airflow for large-scale data processing.

(19:59) Vasantha’s experience in overcoming challenges with legacy orchestration tools.

(22:22) Integration of data engineering and data science pipelines at Ford.

(28:03) How deferrable operators in Airflow improve performance and save costs.

(32:12) Vasantha’s insights into tuning Airflow properties for thousands of DAGs.

(36:09) The significance of monitoring and observability in managing Airflow instances.

Resources Mentioned:

Vasantha Kosuri-Marshall -

https://www.linkedin.com/in/vasantha-kosuri-marshall-0b0aab188/

Apache Airflow -

https://airflow.apache.org/

Google Cloud Platform (GCP) -

https://cloud.google.com/

Ford Motor Company | LinkedIn -

https://www.linkedin.com/company/ford-motor-company/

Ford Motor Company | Website -

https://www.ford.com/

Astronomer -

https://www.astronomer.io/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

39 episodios

Artwork
iconCompartir
 
Manage episode 461366533 series 2053958
Contenido proporcionado por The Data Flowcast. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente The Data Flowcast o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Data engineering is entering a new era, where orchestration and automation are redefining how large-scale projects operate. This episode features Vasantha Kosuri-Marshall, Data and ML Ops Engineer at Ford Motor Company. Vasantha shares her expertise in managing complex data pipelines. She takes us through Ford's transition to cloud platforms, the adoption of Airflow and the intricate challenges of orchestrating data in a diverse environment.

Key Takeaways:

(03:10) Vasantha’s transition to the Advanced Driving Assist Systems team at Ford.

(05:42) Early adoption of Airflow to orchestrate complex data pipelines.

(09:29) Ford's move from on-premise data solutions to Google Cloud Platform.

(12:03) The importance of Airflow's scheduling capabilities for efficient data management.

(16:12) Using Kubernetes to scale Airflow for large-scale data processing.

(19:59) Vasantha’s experience in overcoming challenges with legacy orchestration tools.

(22:22) Integration of data engineering and data science pipelines at Ford.

(28:03) How deferrable operators in Airflow improve performance and save costs.

(32:12) Vasantha’s insights into tuning Airflow properties for thousands of DAGs.

(36:09) The significance of monitoring and observability in managing Airflow instances.

Resources Mentioned:

Vasantha Kosuri-Marshall -

https://www.linkedin.com/in/vasantha-kosuri-marshall-0b0aab188/

Apache Airflow -

https://airflow.apache.org/

Google Cloud Platform (GCP) -

https://cloud.google.com/

Ford Motor Company | LinkedIn -

https://www.linkedin.com/company/ford-motor-company/

Ford Motor Company | Website -

https://www.ford.com/

Astronomer -

https://www.astronomer.io/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

39 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir