Artwork

Contenido proporcionado por Connected Data World. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Connected Data World o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Graph Analytics vs Graph Machine Learning | Jörg Schad

29:07
 
Compartir
 

Manage episode 365202417 series 2773575
Contenido proporcionado por Connected Data World. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Connected Data World o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Graph Analytics has long demonstrated that it solves real-world problems including Fraud, Ranking, Recommendation, text summarization and other NLP tasks.

More recently, Graph Machine Learning applied directly on graphs using graph algorithms and machine learning, has been demonstrating significant advantages in solving the same problems as graph analytics as well as problems that are impractical to solve using graph analytics. Graph Machine Learning does this by training statistical models on the graph resulting in Graph Embeddings and Graph Neural Networks that are used to complex problems in a different way.

Jörg Schad, ArangoDB CTO, compares and contrasts these two approaches (spoiler: often complexity vs precision) in real-world scenarios. What factors should you consider when choosing one over the other and when do you even have a choice? Learn about exciting new developments in Graph ML and the graph techniques on which they are based.

---

Connected Data London 2024 has been announced!.

December 11-13, etc Venues St. Paul’s, City of London

Check #CDL24 for more Presentations, Keynotes, Masterclasses, and Workshops on cutting-edge topics from industry leaders and innovators: https://connected-data.london

  continue reading

41 episodios

Artwork
iconCompartir
 
Manage episode 365202417 series 2773575
Contenido proporcionado por Connected Data World. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Connected Data World o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Graph Analytics has long demonstrated that it solves real-world problems including Fraud, Ranking, Recommendation, text summarization and other NLP tasks.

More recently, Graph Machine Learning applied directly on graphs using graph algorithms and machine learning, has been demonstrating significant advantages in solving the same problems as graph analytics as well as problems that are impractical to solve using graph analytics. Graph Machine Learning does this by training statistical models on the graph resulting in Graph Embeddings and Graph Neural Networks that are used to complex problems in a different way.

Jörg Schad, ArangoDB CTO, compares and contrasts these two approaches (spoiler: often complexity vs precision) in real-world scenarios. What factors should you consider when choosing one over the other and when do you even have a choice? Learn about exciting new developments in Graph ML and the graph techniques on which they are based.

---

Connected Data London 2024 has been announced!.

December 11-13, etc Venues St. Paul’s, City of London

Check #CDL24 for more Presentations, Keynotes, Masterclasses, and Workshops on cutting-edge topics from industry leaders and innovators: https://connected-data.london

  continue reading

41 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir