Artwork

Contenido proporcionado por Michael Kennedy. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Michael Kennedy o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

#516: Accelerating Python Data Science at NVIDIA

1:05:42
 
Compartir
 

Manage episode 501272622 series 1422209
Contenido proporcionado por Michael Kennedy. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Michael Kennedy o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Python’s data stack is getting a serious GPU turbo boost. In this episode, Ben Zaitlen from NVIDIA joins us to unpack RAPIDS, the open source toolkit that lets pandas, scikit-learn, Spark, Polars, and even NetworkX execute on GPUs. We trace the project’s origin and why NVIDIA built it in the open, then dig into the pieces that matter in practice: cuDF for DataFrames, cuML for ML, cuGraph for graphs, cuXfilter for dashboards, and friends like cuSpatial and cuSignal. We talk real speedups, how the pandas accelerator works without a rewrite, and what becomes possible when jobs that used to take hours finish in minutes. You’ll hear strategies for datasets bigger than GPU memory, scaling out with Dask or Ray, Spark acceleration, and the growing role of vector search with cuVS for AI workloads. If you know the CPU tools, this is your on-ramp to the same APIs at GPU speed.
Episode sponsors
Posit
Talk Python Courses

Links from the show

RAPIDS: github.com/rapidsai
Example notebooks showing drop-in accelerators: github.com
Benjamin Zaitlen - LinkedIn: linkedin.com
RAPIDS Deployment Guide (Stable): docs.rapids.ai
RAPIDS cuDF API Docs (Stable): docs.rapids.ai
Asianometry YouTube Video: youtube.com
cuDF pandas Accelerator (Stable): docs.rapids.ai
Watch this episode on YouTube: youtube.com
Episode #516 deep-dive: talkpython.fm/516
Episode transcripts: talkpython.fm
Theme Song: Developer Rap
🥁 Served in a Flask 🎸: talkpython.fm/flasksong
---== Don't be a stranger ==---
YouTube: youtube.com/@talkpython
Bluesky: @talkpython.fm
Mastodon: @[email protected]
X.com: @talkpython
Michael on Bluesky: @mkennedy.codes
Michael on Mastodon: @[email protected]
Michael on X.com: @mkennedy
  continue reading

724 episodios

Artwork
iconCompartir
 
Manage episode 501272622 series 1422209
Contenido proporcionado por Michael Kennedy. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Michael Kennedy o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Python’s data stack is getting a serious GPU turbo boost. In this episode, Ben Zaitlen from NVIDIA joins us to unpack RAPIDS, the open source toolkit that lets pandas, scikit-learn, Spark, Polars, and even NetworkX execute on GPUs. We trace the project’s origin and why NVIDIA built it in the open, then dig into the pieces that matter in practice: cuDF for DataFrames, cuML for ML, cuGraph for graphs, cuXfilter for dashboards, and friends like cuSpatial and cuSignal. We talk real speedups, how the pandas accelerator works without a rewrite, and what becomes possible when jobs that used to take hours finish in minutes. You’ll hear strategies for datasets bigger than GPU memory, scaling out with Dask or Ray, Spark acceleration, and the growing role of vector search with cuVS for AI workloads. If you know the CPU tools, this is your on-ramp to the same APIs at GPU speed.
Episode sponsors
Posit
Talk Python Courses

Links from the show

RAPIDS: github.com/rapidsai
Example notebooks showing drop-in accelerators: github.com
Benjamin Zaitlen - LinkedIn: linkedin.com
RAPIDS Deployment Guide (Stable): docs.rapids.ai
RAPIDS cuDF API Docs (Stable): docs.rapids.ai
Asianometry YouTube Video: youtube.com
cuDF pandas Accelerator (Stable): docs.rapids.ai
Watch this episode on YouTube: youtube.com
Episode #516 deep-dive: talkpython.fm/516
Episode transcripts: talkpython.fm
Theme Song: Developer Rap
🥁 Served in a Flask 🎸: talkpython.fm/flasksong
---== Don't be a stranger ==---
YouTube: youtube.com/@talkpython
Bluesky: @talkpython.fm
Mastodon: @[email protected]
X.com: @talkpython
Michael on Bluesky: @mkennedy.codes
Michael on Mastodon: @[email protected]
Michael on X.com: @mkennedy
  continue reading

724 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir