Artwork

Contenido proporcionado por Jon Krohn. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Jon Krohn o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

863: TabPFN: Deep Learning for Tabular Data (That Actually Works!), with Prof. Frank Hutter

1:06:06
 
Compartir
 

Manage episode 467254505 series 2532807
Contenido proporcionado por Jon Krohn. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Jon Krohn o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Jon Krohn talks tabular data with Frank Hutter, Professor of Artificial Intelligence at Universität Freiburg in Germany. Despite the great steps that deep learning has made in analysing images, audio, and natural language, tabular data has remained its insurmountable obstacle. In this episode, Frank Hutter details the path he has found around this obstacle even with limited data by using a ground-breaking transformer architecture. Named TabPFN, this approach is vastly outperforming other architectures, as testified by a write up of TabPFN’s capabilities in Nature. Frank talks about his work on version 2 of TabPFN, the architecture’s cross-industry applicability, and how TabPFN is able to return accurate results with synthetic data.

This episode is brought to you by ODSC, the Open Data Science Conference. Interested in sponsoring a SuperDataScience Podcast episode? Email [email protected] for sponsorship information.

In this episode you will learn:

  • (05:57) All about the TabPFN architecture
  • (21:27) Use cases for Bayesian inference
  • (35:07) On getting published in Nature
  • (44:03) How TabPFN handles time series data
  • (51:52) All about Prior Labs

Additional materials: www.superdatascience.com/863

  continue reading

1026 episodios

Artwork
iconCompartir
 
Manage episode 467254505 series 2532807
Contenido proporcionado por Jon Krohn. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Jon Krohn o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Jon Krohn talks tabular data with Frank Hutter, Professor of Artificial Intelligence at Universität Freiburg in Germany. Despite the great steps that deep learning has made in analysing images, audio, and natural language, tabular data has remained its insurmountable obstacle. In this episode, Frank Hutter details the path he has found around this obstacle even with limited data by using a ground-breaking transformer architecture. Named TabPFN, this approach is vastly outperforming other architectures, as testified by a write up of TabPFN’s capabilities in Nature. Frank talks about his work on version 2 of TabPFN, the architecture’s cross-industry applicability, and how TabPFN is able to return accurate results with synthetic data.

This episode is brought to you by ODSC, the Open Data Science Conference. Interested in sponsoring a SuperDataScience Podcast episode? Email [email protected] for sponsorship information.

In this episode you will learn:

  • (05:57) All about the TabPFN architecture
  • (21:27) Use cases for Bayesian inference
  • (35:07) On getting published in Nature
  • (44:03) How TabPFN handles time series data
  • (51:52) All about Prior Labs

Additional materials: www.superdatascience.com/863

  continue reading

1026 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir