Artwork

Contenido proporcionado por Razorleaf Corp.. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Razorleaf Corp. o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

#112: The Data Models Dilemma in Digital Engineering

38:26
 
Compartir
 

Manage episode 522277574 series 3521267
Contenido proporcionado por Razorleaf Corp.. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Razorleaf Corp. o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Why Data Models Matter in Digital Engineering (Now More Than Ever)

In this episode, Juliann Grant and Jonathan Scott dive deep into the growing conversation around data models in digital engineering. With increasing pressure to enable the digital thread, digital twins, and emerging AI capabilities, understanding how data is structured and why it varies across systems is more critical than ever.

Together, they unpack:

  • What a data model really is and why “model” is the key word
  • Why every engineering and business system represents data differently
  • The mounting challenges created by siloed, mismatched data structures
  • How digital twin initiatives have heightened the urgency for clean, connected data
  • Real-world examples showing why context, meaning, and structure matter
  • The risks and limitations of approaches like data lakes
  • How manufacturers can begin evaluating, modeling, and aligning their data for desired business outcomes
  • Why there will never be a universal data model — and why that’s okay
  • Best practices for getting started, staying adaptable, and keeping data meaningful as technology evolves

This episode is especially relevant for anyone interested in:

  • Digital Transformation
  • PLM / PDM Modernization
  • Digital Thread Initiatives
  • Digital Twin Strategy
  • AI Readiness in Engineering and Manufacturing

Notable Quote:

"If the AI doesn't understand the data, and it's just doing statistical prediction, the predictions can be junk. In a safety-critical situation, that's not cool." – Jonathan Scott

Have questions or thoughts on this episode? Leave a comment or email [email protected].

Music is considered “royalty-free” and discovered on Story Blocks.
Technical Podcast Support by Jon Keur at Wayfare Recording Co.
© 2024 Razorleaf Corp. All Rights Reserved.

  continue reading

113 episodios

Artwork
iconCompartir
 
Manage episode 522277574 series 3521267
Contenido proporcionado por Razorleaf Corp.. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Razorleaf Corp. o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Why Data Models Matter in Digital Engineering (Now More Than Ever)

In this episode, Juliann Grant and Jonathan Scott dive deep into the growing conversation around data models in digital engineering. With increasing pressure to enable the digital thread, digital twins, and emerging AI capabilities, understanding how data is structured and why it varies across systems is more critical than ever.

Together, they unpack:

  • What a data model really is and why “model” is the key word
  • Why every engineering and business system represents data differently
  • The mounting challenges created by siloed, mismatched data structures
  • How digital twin initiatives have heightened the urgency for clean, connected data
  • Real-world examples showing why context, meaning, and structure matter
  • The risks and limitations of approaches like data lakes
  • How manufacturers can begin evaluating, modeling, and aligning their data for desired business outcomes
  • Why there will never be a universal data model — and why that’s okay
  • Best practices for getting started, staying adaptable, and keeping data meaningful as technology evolves

This episode is especially relevant for anyone interested in:

  • Digital Transformation
  • PLM / PDM Modernization
  • Digital Thread Initiatives
  • Digital Twin Strategy
  • AI Readiness in Engineering and Manufacturing

Notable Quote:

"If the AI doesn't understand the data, and it's just doing statistical prediction, the predictions can be junk. In a safety-critical situation, that's not cool." – Jonathan Scott

Have questions or thoughts on this episode? Leave a comment or email [email protected].

Music is considered “royalty-free” and discovered on Story Blocks.
Technical Podcast Support by Jon Keur at Wayfare Recording Co.
© 2024 Razorleaf Corp. All Rights Reserved.

  continue reading

113 episodios

All episodes

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir