Artwork

Contenido proporcionado por SE Radio Team and [email protected] (SE-Radio Team). Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente SE Radio Team and [email protected] (SE-Radio Team) o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

SE Radio 698: Srujana Merugu on How to build an LLM App

1:18:30
 
Compartir
 

Manage episode 523468964 series 215
Contenido proporcionado por SE Radio Team and [email protected] (SE-Radio Team). Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente SE Radio Team and [email protected] (SE-Radio Team) o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

In this episode of Software Engineering Radio, Srujana Merugu, an AI researcher with decades of experience, speaks with host Priyanka Raghavan about building LLM-based applications. The discussion begins by clarifying essential concepts like generative vs. predictive AI, pre-training vs. fine-tuning, and the transformer architecture that powers modern LLMs.

Srujana explains diffusion models and vision transformers, highlighting how multimodal AI is reshaping content creation. The conversation then moves to practical aspects—where LLMs make sense, where they don't, and a decision framework for evaluating use cases. They explore common application patterns such as retrieval-augmented generation (RAG) and agentic architectures, breaking down components like planners, orchestrators, memory, and tools. Key considerations for model selection, evaluation metrics, and safety guardrails are discussed in depth. The episode also touches on prompting strategies, automated prompt optimization, and emerging trends like multi-sensory AI and the "Internet of Senses." Finally, Srujana shares tips on staying current in a fast-moving AI landscape and emphasizes lifelong learning and curated knowledge sources.

  continue reading

1059 episodios

Artwork
iconCompartir
 
Manage episode 523468964 series 215
Contenido proporcionado por SE Radio Team and [email protected] (SE-Radio Team). Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente SE Radio Team and [email protected] (SE-Radio Team) o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

In this episode of Software Engineering Radio, Srujana Merugu, an AI researcher with decades of experience, speaks with host Priyanka Raghavan about building LLM-based applications. The discussion begins by clarifying essential concepts like generative vs. predictive AI, pre-training vs. fine-tuning, and the transformer architecture that powers modern LLMs.

Srujana explains diffusion models and vision transformers, highlighting how multimodal AI is reshaping content creation. The conversation then moves to practical aspects—where LLMs make sense, where they don't, and a decision framework for evaluating use cases. They explore common application patterns such as retrieval-augmented generation (RAG) and agentic architectures, breaking down components like planners, orchestrators, memory, and tools. Key considerations for model selection, evaluation metrics, and safety guardrails are discussed in depth. The episode also touches on prompting strategies, automated prompt optimization, and emerging trends like multi-sensory AI and the "Internet of Senses." Finally, Srujana shares tips on staying current in a fast-moving AI landscape and emphasizes lifelong learning and curated knowledge sources.

  continue reading

1059 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir