Artwork

Contenido proporcionado por Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Can You Rely on Your AI? Applying the AIR Tool to Improve Classifier Performance

38:50
 
Compartir
 

Manage episode 421358557 series 1264075
Contenido proporcionado por Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Modern analytic methods, including artificial intelligence (AI) and machine learning (ML) classifiers, depend on correlations; however, such approaches fail to account for confounding in the data, which prevents accurate modeling of cause and effect and often leads to prediction bias. The Software Engineering Institute (SEI) has developed a new AI Robustness (AIR) tool that allows users to gauge AI and ML classifier performance with unprecedented confidence. This project is sponsored by the Office of the Under Secretary of Defense for Research and Engineering to transition use of our AIR tool to AI users across the Department of Defense. During the webcast, the research team will hold a panel discussion on the AIR tool and discuss opportunities for collaboration. Our team efforts focus strongly on transition and provide guidance, training, and software that put our transition collaborators on a path to successful adoption of this technology to meet their AI/ML evaluation needs.

What Attendees Will Learn:

• How AIR adds analytical capability that didn't previously exist, enabling an analysis to characterize and measure the overall accuracy of the AI as the underlying environment changes

• Examples of the AIR process and results from causal discovery to causal identification to causal inference • Opportunities for partnership and collaboration

  continue reading

174 episodios

Artwork
iconCompartir
 
Manage episode 421358557 series 1264075
Contenido proporcionado por Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Modern analytic methods, including artificial intelligence (AI) and machine learning (ML) classifiers, depend on correlations; however, such approaches fail to account for confounding in the data, which prevents accurate modeling of cause and effect and often leads to prediction bias. The Software Engineering Institute (SEI) has developed a new AI Robustness (AIR) tool that allows users to gauge AI and ML classifier performance with unprecedented confidence. This project is sponsored by the Office of the Under Secretary of Defense for Research and Engineering to transition use of our AIR tool to AI users across the Department of Defense. During the webcast, the research team will hold a panel discussion on the AIR tool and discuss opportunities for collaboration. Our team efforts focus strongly on transition and provide guidance, training, and software that put our transition collaborators on a path to successful adoption of this technology to meet their AI/ML evaluation needs.

What Attendees Will Learn:

• How AIR adds analytical capability that didn't previously exist, enabling an analysis to characterize and measure the overall accuracy of the AI as the underlying environment changes

• Examples of the AIR process and results from causal discovery to causal identification to causal inference • Opportunities for partnership and collaboration

  continue reading

174 episodios

सभी एपिसोड

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir