Artwork

Contenido proporcionado por Miko Pawlikowski. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Miko Pawlikowski o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Machine Learning algorithms explained, with Vadim Smolyakov - HS#18

51:05
 
Compartir
 

Manage episode 432622723 series 3558558
Contenido proporcionado por Miko Pawlikowski. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Miko Pawlikowski o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Simplifying Algorithms with Vadim Smolyakov!

Get Vadim's book 45% OFF with code hockeystick24 here: https://mng.bz/4J5Q

Join Miko Pawlikowski on HockeyStick as he discusses machine learning algorithms with Vadim Smolyakov, author of 'Machine Learning Algorithms in Depth.' They explore Vadim's experiences at MIT CSAIL, his work at Microsoft, and key machine learning concepts like Bayesian nonparametrics, decision trees, and Markov chain Monte Carlo methods. Vadim also shares insights on his book, the challenges in implementing ML algorithms, and predictions about the future of AI. This episode is perfect for intermediate learners and those new to machine learning.

0:00 Guest Introduction: Vadim Smolyakov

00:48 MIT CSAIL Experience

01:28 Bayesian Inference and Non-Parametrics

02:30 Vadim's Work at Microsoft

03:14 The Origin of Vadim's Book

06:41 Target Audience for the Book

08:04 Explaining Bayesian Algorithms

15:57 Supervised vs Unsupervised Learning

19:22 Decision Trees and Random Forests

24:42 Challenges in Implementing ML Algorithms

31:32 Top Machine Learning Algorithms

45:27 Future of AI and ML

50:31 Conclusion and Farewell


This is a public episode. If you would like to discuss this with other subscribers or get access to bonus episodes, visit www.hockeystick.show
  continue reading

29 episodios

Artwork
iconCompartir
 
Manage episode 432622723 series 3558558
Contenido proporcionado por Miko Pawlikowski. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Miko Pawlikowski o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Simplifying Algorithms with Vadim Smolyakov!

Get Vadim's book 45% OFF with code hockeystick24 here: https://mng.bz/4J5Q

Join Miko Pawlikowski on HockeyStick as he discusses machine learning algorithms with Vadim Smolyakov, author of 'Machine Learning Algorithms in Depth.' They explore Vadim's experiences at MIT CSAIL, his work at Microsoft, and key machine learning concepts like Bayesian nonparametrics, decision trees, and Markov chain Monte Carlo methods. Vadim also shares insights on his book, the challenges in implementing ML algorithms, and predictions about the future of AI. This episode is perfect for intermediate learners and those new to machine learning.

0:00 Guest Introduction: Vadim Smolyakov

00:48 MIT CSAIL Experience

01:28 Bayesian Inference and Non-Parametrics

02:30 Vadim's Work at Microsoft

03:14 The Origin of Vadim's Book

06:41 Target Audience for the Book

08:04 Explaining Bayesian Algorithms

15:57 Supervised vs Unsupervised Learning

19:22 Decision Trees and Random Forests

24:42 Challenges in Implementing ML Algorithms

31:32 Top Machine Learning Algorithms

45:27 Future of AI and ML

50:31 Conclusion and Farewell


This is a public episode. If you would like to discuss this with other subscribers or get access to bonus episodes, visit www.hockeystick.show
  continue reading

29 episodios

Όλα τα επεισόδια

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida