Pełne archiwum audycji Radia Paranormalium. Podcasty o tematyce paranormalnej, ezoterycznej, konspiracyjnej, a od niedawna również literackiej. Słuchaczy chcących wesprzeć nasze radio zapraszamy pod ten link: paypal.com/paypalme/RadioParanormalium. Zachęcamy również do odwiedzenia naszej strony internetowej.
…
continue reading
Contenido proporcionado por Karolina Głowacka and Radio Naukowe - Karolina Głowacka. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Karolina Głowacka and Radio Naukowe - Karolina Głowacka o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !
¡Desconecta con la aplicación Player FM !
#202 Mikroskopia bezstresowa - nowe pomysły na podglądanie życia | prof. Maciej Trusiak
MP3•Episodio en casa
Manage episode 422186583 series 2846273
Contenido proporcionado por Karolina Głowacka and Radio Naukowe - Karolina Głowacka. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Karolina Głowacka and Radio Naukowe - Karolina Głowacka o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Wyobraźcie sobie badanie komórek pod mikroskopem: macie do dyspozycji tysiące wyhodowanych komórek, ale żeby coś zobaczyć, trzeba je oczywiście odpowiednio powiększyć. Pole widoczne w odpowiednio mocnym mikroskopie mierzy zaledwie 80x80 mikrometrów, a więc mieści się w nim dosłownie kilka komórek. – Trzeba mieć dużo szczęścia, żeby trafić akurat na takie komórki, które zachowują się w sposób ciekawy dla nas – mówi prof. Maciej Trusiak z Instytutu Mikromechaniki i Fotoniki na Wydziale Mechatroniki Politechniki Warszawskiej, laureat ERC Starting Grant, czyli prestiżowego europejskiego „grantu na przełom” – służy poszukiwaniu nowych rozwiązań i pól nauki. Prof. Trusiak otrzymał taki właśnie grant na projekt NaNoLens: nanoskopii bezsoczewkowej i bezznacznikowej. Nowe narzędzie badawcze ma pozwolić na o wiele szersze pole widzenia i obserwację wielu komórek jednocześnie.
NaNoLens ma odpowiedzieć na jeszcze jeden problem. Żywe komórki są przezroczyste, żeby móc im się przyglądać korzysta się z mikroskopii fluorescencyjnej: przed pomiarem wybarwia się próbkę (można nawet osobno wybarwić poszczególne elementy komórki), następnie mocno się ją naświetla, by wzbudzić fluorofory, które zaczynają świecić na dany kolor i pod mikroskopem wszystko pięknie widać. Ten system ma jednak poważne wady: zajmuje dużo czasu, jest dość kosztowny i obciąża komórkę – nie do końca wiemy, czy bez kolorowania i naświetlania zachowywałaby się tak samo.
Projekt NaNoLens zakłada rezygnację ze znaczników. Ale jak coś bez nich zobaczyć? Potrzebne są światło i… algorytm. – Mikroskopia obliczeniowa składa się z dwóch etapów: najpierw rejestrujemy dane, potem je rekonstruujemy – opowiada prof. Trusiak. Przez badaną komórkę przepuszczamy światło, nagrywamy efekt, a potem odpowiedni algorytm dokonuje wstecznych obliczeń, jak musiała wyglądać komórka w tym procesie. Dzięki zastosowaniu techniki bezsoczewkowej można natomiast obserwować całą kolonię komórek naraz, a więc wyłapać interesujące nas zjawisko dużo szybciej i z mniejszą szansą, że coś przeoczymy lub pomylimy.
Fascynujące, co? Rozmawiamy też o tym, do czego można byłoby wykorzystywać w przyszłości technologię NaNoLens, co trzeba zrobić, żeby dostać grant ERC, jak ważne są pieniądze w nauce (bardzo!) i w jakich dziedzinach „Polak potrafi” w światowej nauce (jesteśmy mocni w fotonice i optyce). Bardzo polecam ten odcinek, to konkretne zajrzenie za kulisy nauki!
…
continue reading
NaNoLens ma odpowiedzieć na jeszcze jeden problem. Żywe komórki są przezroczyste, żeby móc im się przyglądać korzysta się z mikroskopii fluorescencyjnej: przed pomiarem wybarwia się próbkę (można nawet osobno wybarwić poszczególne elementy komórki), następnie mocno się ją naświetla, by wzbudzić fluorofory, które zaczynają świecić na dany kolor i pod mikroskopem wszystko pięknie widać. Ten system ma jednak poważne wady: zajmuje dużo czasu, jest dość kosztowny i obciąża komórkę – nie do końca wiemy, czy bez kolorowania i naświetlania zachowywałaby się tak samo.
Projekt NaNoLens zakłada rezygnację ze znaczników. Ale jak coś bez nich zobaczyć? Potrzebne są światło i… algorytm. – Mikroskopia obliczeniowa składa się z dwóch etapów: najpierw rejestrujemy dane, potem je rekonstruujemy – opowiada prof. Trusiak. Przez badaną komórkę przepuszczamy światło, nagrywamy efekt, a potem odpowiedni algorytm dokonuje wstecznych obliczeń, jak musiała wyglądać komórka w tym procesie. Dzięki zastosowaniu techniki bezsoczewkowej można natomiast obserwować całą kolonię komórek naraz, a więc wyłapać interesujące nas zjawisko dużo szybciej i z mniejszą szansą, że coś przeoczymy lub pomylimy.
Fascynujące, co? Rozmawiamy też o tym, do czego można byłoby wykorzystywać w przyszłości technologię NaNoLens, co trzeba zrobić, żeby dostać grant ERC, jak ważne są pieniądze w nauce (bardzo!) i w jakich dziedzinach „Polak potrafi” w światowej nauce (jesteśmy mocni w fotonice i optyce). Bardzo polecam ten odcinek, to konkretne zajrzenie za kulisy nauki!
295 episodios
MP3•Episodio en casa
Manage episode 422186583 series 2846273
Contenido proporcionado por Karolina Głowacka and Radio Naukowe - Karolina Głowacka. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Karolina Głowacka and Radio Naukowe - Karolina Głowacka o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Wyobraźcie sobie badanie komórek pod mikroskopem: macie do dyspozycji tysiące wyhodowanych komórek, ale żeby coś zobaczyć, trzeba je oczywiście odpowiednio powiększyć. Pole widoczne w odpowiednio mocnym mikroskopie mierzy zaledwie 80x80 mikrometrów, a więc mieści się w nim dosłownie kilka komórek. – Trzeba mieć dużo szczęścia, żeby trafić akurat na takie komórki, które zachowują się w sposób ciekawy dla nas – mówi prof. Maciej Trusiak z Instytutu Mikromechaniki i Fotoniki na Wydziale Mechatroniki Politechniki Warszawskiej, laureat ERC Starting Grant, czyli prestiżowego europejskiego „grantu na przełom” – służy poszukiwaniu nowych rozwiązań i pól nauki. Prof. Trusiak otrzymał taki właśnie grant na projekt NaNoLens: nanoskopii bezsoczewkowej i bezznacznikowej. Nowe narzędzie badawcze ma pozwolić na o wiele szersze pole widzenia i obserwację wielu komórek jednocześnie.
NaNoLens ma odpowiedzieć na jeszcze jeden problem. Żywe komórki są przezroczyste, żeby móc im się przyglądać korzysta się z mikroskopii fluorescencyjnej: przed pomiarem wybarwia się próbkę (można nawet osobno wybarwić poszczególne elementy komórki), następnie mocno się ją naświetla, by wzbudzić fluorofory, które zaczynają świecić na dany kolor i pod mikroskopem wszystko pięknie widać. Ten system ma jednak poważne wady: zajmuje dużo czasu, jest dość kosztowny i obciąża komórkę – nie do końca wiemy, czy bez kolorowania i naświetlania zachowywałaby się tak samo.
Projekt NaNoLens zakłada rezygnację ze znaczników. Ale jak coś bez nich zobaczyć? Potrzebne są światło i… algorytm. – Mikroskopia obliczeniowa składa się z dwóch etapów: najpierw rejestrujemy dane, potem je rekonstruujemy – opowiada prof. Trusiak. Przez badaną komórkę przepuszczamy światło, nagrywamy efekt, a potem odpowiedni algorytm dokonuje wstecznych obliczeń, jak musiała wyglądać komórka w tym procesie. Dzięki zastosowaniu techniki bezsoczewkowej można natomiast obserwować całą kolonię komórek naraz, a więc wyłapać interesujące nas zjawisko dużo szybciej i z mniejszą szansą, że coś przeoczymy lub pomylimy.
Fascynujące, co? Rozmawiamy też o tym, do czego można byłoby wykorzystywać w przyszłości technologię NaNoLens, co trzeba zrobić, żeby dostać grant ERC, jak ważne są pieniądze w nauce (bardzo!) i w jakich dziedzinach „Polak potrafi” w światowej nauce (jesteśmy mocni w fotonice i optyce). Bardzo polecam ten odcinek, to konkretne zajrzenie za kulisy nauki!
…
continue reading
NaNoLens ma odpowiedzieć na jeszcze jeden problem. Żywe komórki są przezroczyste, żeby móc im się przyglądać korzysta się z mikroskopii fluorescencyjnej: przed pomiarem wybarwia się próbkę (można nawet osobno wybarwić poszczególne elementy komórki), następnie mocno się ją naświetla, by wzbudzić fluorofory, które zaczynają świecić na dany kolor i pod mikroskopem wszystko pięknie widać. Ten system ma jednak poważne wady: zajmuje dużo czasu, jest dość kosztowny i obciąża komórkę – nie do końca wiemy, czy bez kolorowania i naświetlania zachowywałaby się tak samo.
Projekt NaNoLens zakłada rezygnację ze znaczników. Ale jak coś bez nich zobaczyć? Potrzebne są światło i… algorytm. – Mikroskopia obliczeniowa składa się z dwóch etapów: najpierw rejestrujemy dane, potem je rekonstruujemy – opowiada prof. Trusiak. Przez badaną komórkę przepuszczamy światło, nagrywamy efekt, a potem odpowiedni algorytm dokonuje wstecznych obliczeń, jak musiała wyglądać komórka w tym procesie. Dzięki zastosowaniu techniki bezsoczewkowej można natomiast obserwować całą kolonię komórek naraz, a więc wyłapać interesujące nas zjawisko dużo szybciej i z mniejszą szansą, że coś przeoczymy lub pomylimy.
Fascynujące, co? Rozmawiamy też o tym, do czego można byłoby wykorzystywać w przyszłości technologię NaNoLens, co trzeba zrobić, żeby dostać grant ERC, jak ważne są pieniądze w nauce (bardzo!) i w jakich dziedzinach „Polak potrafi” w światowej nauce (jesteśmy mocni w fotonice i optyce). Bardzo polecam ten odcinek, to konkretne zajrzenie za kulisy nauki!
295 episodios
Todos los episodios
×Bienvenido a Player FM!
Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.