Artwork

Contenido proporcionado por Ulrik B. Carlsson and Ulrik Carlsson. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Ulrik B. Carlsson and Ulrik Carlsson o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Power BI & More: Is your Power Platform data ready for Data Science/Machine Learning?

32:51
 
Compartir
 

Manage episode 248013320 series 2582622
Contenido proporcionado por Ulrik B. Carlsson and Ulrik Carlsson. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Ulrik B. Carlsson and Ulrik Carlsson o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

In this episode (brought to you by mscrm-addons.com), Matt Lamb, Data Science and Commercial Analytics Lead at eLogic, rejoins the podcast to discuss what we need from our Dynamics 365 implementation when stepping into Machine Learning and AI. What do we need from our Dynamics 365 data in terms quantity and completeness to get effective results? What are the ways to deal with incomplete and what consequences does it have on your Machine Learning results when you make even simple updates to your business processes. In order to create a record set to use as a base for Machine Learning, you may not need as many records as you think, but need to strike the right balance of quantity and quality.

In this episode we discuss:

o How many records are really needed for effective machine learning?

o What structure and maturity level of data is needed?

o Supervised vs. Unsupervised Learning

o How many people does Matt’s dog need to meet?

o What happens with your algorithms when you make changes to your business process?

o Tips to make your data scientist happy

Got questions or suggestions for future episode? Email voice@crm.audio.

This episode is a production of Dynamic Podcasts LLC.

  continue reading

23 episodios

Artwork
iconCompartir
 
Manage episode 248013320 series 2582622
Contenido proporcionado por Ulrik B. Carlsson and Ulrik Carlsson. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Ulrik B. Carlsson and Ulrik Carlsson o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

In this episode (brought to you by mscrm-addons.com), Matt Lamb, Data Science and Commercial Analytics Lead at eLogic, rejoins the podcast to discuss what we need from our Dynamics 365 implementation when stepping into Machine Learning and AI. What do we need from our Dynamics 365 data in terms quantity and completeness to get effective results? What are the ways to deal with incomplete and what consequences does it have on your Machine Learning results when you make even simple updates to your business processes. In order to create a record set to use as a base for Machine Learning, you may not need as many records as you think, but need to strike the right balance of quantity and quality.

In this episode we discuss:

o How many records are really needed for effective machine learning?

o What structure and maturity level of data is needed?

o Supervised vs. Unsupervised Learning

o How many people does Matt’s dog need to meet?

o What happens with your algorithms when you make changes to your business process?

o Tips to make your data scientist happy

Got questions or suggestions for future episode? Email voice@crm.audio.

This episode is a production of Dynamic Podcasts LLC.

  continue reading

23 episodios

Όλα τα επεισόδια

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir