Artwork

Contenido proporcionado por Ulrik B. Carlsson and Ulrik Carlsson. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Ulrik B. Carlsson and Ulrik Carlsson o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

Matt and Ulrik make unsupervised product recommendation engines

51:28
 
Compartir
 

Manage episode 248013317 series 2582622
Contenido proporcionado por Ulrik B. Carlsson and Ulrik Carlsson. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Ulrik B. Carlsson and Ulrik Carlsson o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
This episode is brought to you by by Maplytics by Inogic. Data Scientist Matt Lamb and Microsoft MVP Ulrik Carlsson discusses how you create product recommendation engines. A separate discipline in data science, combining content filtering and collaborative filtering, to do targeted product recommendations is not only more difficult, but possibly also one of the most lucrative. Episode also includes in discussions on: Combining advanced customer profiling with transactional data.

  • Matt talks to his new product PinPoint, a product recommendation engine for the Aftermarket
  • How Content Filtering and Collaborative Filtering combined can make for advanced product recommendations
  • Why Ulrik doesn't like continued recommendations from Amazon to buy smoke detectors when they perfectly well know he already has two (and how to tune your algorithm to avoid annoying your customer).
  • Possible data science urban legend on Target identifying teenage pregnancies before concerned parents of pregnant teen knows about it.
  • Will Matt this time give a concrete answer to the question on how many records are needed to get good results from these algorithms?

Links: PinPoint for Aftermarket

  continue reading

23 episodios

Artwork
iconCompartir
 
Manage episode 248013317 series 2582622
Contenido proporcionado por Ulrik B. Carlsson and Ulrik Carlsson. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente Ulrik B. Carlsson and Ulrik Carlsson o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
This episode is brought to you by by Maplytics by Inogic. Data Scientist Matt Lamb and Microsoft MVP Ulrik Carlsson discusses how you create product recommendation engines. A separate discipline in data science, combining content filtering and collaborative filtering, to do targeted product recommendations is not only more difficult, but possibly also one of the most lucrative. Episode also includes in discussions on: Combining advanced customer profiling with transactional data.

  • Matt talks to his new product PinPoint, a product recommendation engine for the Aftermarket
  • How Content Filtering and Collaborative Filtering combined can make for advanced product recommendations
  • Why Ulrik doesn't like continued recommendations from Amazon to buy smoke detectors when they perfectly well know he already has two (and how to tune your algorithm to avoid annoying your customer).
  • Possible data science urban legend on Target identifying teenage pregnancies before concerned parents of pregnant teen knows about it.
  • Will Matt this time give a concrete answer to the question on how many records are needed to get good results from these algorithms?

Links: PinPoint for Aftermarket

  continue reading

23 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida

Escucha este programa mientras exploras
Reproducir