Artwork

Contenido proporcionado por open.intel. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente open.intel o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !

AI Development and Guardrails

35:38
 
Compartir
 

Manage episode 436656079 series 3446189
Contenido proporcionado por open.intel. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente open.intel o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Ezequiel Lanza and Katherine Druckman from Intel's Open Ecosystem team chat with Daniel Whitenack, founder and CEO of Prediction Guard. They discuss the importance and implementation of guardrails for securing generative AI platforms and cover the operational challenges and security considerations of running AI models, the concept of responsible AI, and practical advice for integrating guardrails into AI workflows. Additionally, the conversation touches on multi-model integrations, open source contributions, and the significance of vendor-neutral frameworks in achieving a secure and efficient AI ecosystem.

00:00 Introduction
01:28 What is Prediction Guard?
03:31 Understanding Guardrails in AI
06:49 Security Risks and Responsible AI
13:30 Open Source and Model Security
19:00 Open Platform for Enterprise AI
20:26 Contributing to Open Source Projects
27:12 Final Thoughts

Guest:

Daniel Whitenack (aka Data Dan) is a Ph.D. trained data scientist and founder of Prediction Guard. He has more than ten years of experience developing and deploying machine learning models at scale, and he has built data teams at two startups and an international NGO with 4000+ staff. Daniel co-hosts the Practical AI podcast, has spoken at conferences around the world (ODSC, Applied Machine Learning Days, O’Reilly AI, QCon AI, GopherCon, KubeCon, and more), and occasionally teaches data science/analytics at Purdue University.

  continue reading

80 episodios

Artwork
iconCompartir
 
Manage episode 436656079 series 3446189
Contenido proporcionado por open.intel. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente open.intel o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.

Ezequiel Lanza and Katherine Druckman from Intel's Open Ecosystem team chat with Daniel Whitenack, founder and CEO of Prediction Guard. They discuss the importance and implementation of guardrails for securing generative AI platforms and cover the operational challenges and security considerations of running AI models, the concept of responsible AI, and practical advice for integrating guardrails into AI workflows. Additionally, the conversation touches on multi-model integrations, open source contributions, and the significance of vendor-neutral frameworks in achieving a secure and efficient AI ecosystem.

00:00 Introduction
01:28 What is Prediction Guard?
03:31 Understanding Guardrails in AI
06:49 Security Risks and Responsible AI
13:30 Open Source and Model Security
19:00 Open Platform for Enterprise AI
20:26 Contributing to Open Source Projects
27:12 Final Thoughts

Guest:

Daniel Whitenack (aka Data Dan) is a Ph.D. trained data scientist and founder of Prediction Guard. He has more than ten years of experience developing and deploying machine learning models at scale, and he has built data teams at two startups and an international NGO with 4000+ staff. Daniel co-hosts the Practical AI podcast, has spoken at conferences around the world (ODSC, Applied Machine Learning Days, O’Reilly AI, QCon AI, GopherCon, KubeCon, and more), and occasionally teaches data science/analytics at Purdue University.

  continue reading

80 episodios

Todos los episodios

×
 
Loading …

Bienvenido a Player FM!

Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.

 

Guia de referencia rapida