Artificial Intelligence has suddenly gone from the fringes of science to being everywhere. So how did we get here? And where's this all heading? In this new series of Science Friction, we're finding out.
…
continue reading
Contenido proporcionado por NLP Highlights and Allen Institute for Artificial Intelligence. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente NLP Highlights and Allen Institute for Artificial Intelligence o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
Player FM : aplicación de podcast
¡Desconecta con la aplicación Player FM !
¡Desconecta con la aplicación Player FM !
96 - Question Answering as an Annotation Format, with Luke Zettlemoyer
MP3•Episodio en casa
Manage episode 246073641 series 1452120
Contenido proporcionado por NLP Highlights and Allen Institute for Artificial Intelligence. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente NLP Highlights and Allen Institute for Artificial Intelligence o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
In this episode, we chat with Luke Zettlemoyer about Question Answering as a format for crowdsourcing annotations of various semantic phenomena in text. We start by talking about QA-SRL and QAMR, two datasets that use QA pairs to annotate predicate-argument relations at the sentence level. Luke describes how this annotation scheme makes it possible to obtain annotations from non-experts, and discusses the tradeoffs involved in choosing this scheme. Then we talk about the challenges involved in using QA-based annotations for more complex phenomena like coreference. Finally, we briefly discuss the value of crowd-labeled datasets given the recent developments in pretraining large language models. Luke is an associate professor at the University of Washington and a Research Scientist at Facebook AI Research.
…
continue reading
145 episodios
MP3•Episodio en casa
Manage episode 246073641 series 1452120
Contenido proporcionado por NLP Highlights and Allen Institute for Artificial Intelligence. Todo el contenido del podcast, incluidos episodios, gráficos y descripciones de podcast, lo carga y proporciona directamente NLP Highlights and Allen Institute for Artificial Intelligence o su socio de plataforma de podcast. Si cree que alguien está utilizando su trabajo protegido por derechos de autor sin su permiso, puede seguir el proceso descrito aquí https://es.player.fm/legal.
In this episode, we chat with Luke Zettlemoyer about Question Answering as a format for crowdsourcing annotations of various semantic phenomena in text. We start by talking about QA-SRL and QAMR, two datasets that use QA pairs to annotate predicate-argument relations at the sentence level. Luke describes how this annotation scheme makes it possible to obtain annotations from non-experts, and discusses the tradeoffs involved in choosing this scheme. Then we talk about the challenges involved in using QA-based annotations for more complex phenomena like coreference. Finally, we briefly discuss the value of crowd-labeled datasets given the recent developments in pretraining large language models. Luke is an associate professor at the University of Washington and a Research Scientist at Facebook AI Research.
…
continue reading
145 episodios
Todos los episodios
×Bienvenido a Player FM!
Player FM está escaneando la web en busca de podcasts de alta calidad para que los disfrutes en este momento. Es la mejor aplicación de podcast y funciona en Android, iPhone y la web. Regístrate para sincronizar suscripciones a través de dispositivos.